’ntermeﬁ -

BRI

Basic Reader Interface

Programmer’s Reference Manual

Intermec Technologies Corporation

Worldwide Headquarters
6001 36th Ave.W.
Everett, WA 98203
USA.

www.intermec.com

The information contained herein is provided solely for the purpose of allowing customers to operate and service
Intermec-manufactured equipment and is not to be released, reproduced, or used for any other purpose without
written permission of Intermec.

Information and specifications contained in this document are subject to change without prior noticed and do
not represent a commitment on the part of Intermec Technologies Corporation.

© 2005-2011 by Intermec Technologies Corporation. All rights reserved.

The word Intermec, the Intermec logo, Norand, ArciTech, Beverage Routebook, CrossBar, dcBrowser, Duratherm,
EasyADC, EasyCoder, EasySet, Fingerprint, INCA (under license), i-gistics, Intellitag, Intellitag Gen2, JANUS,
LabelShop, MobileLAN, Picolink, Ready-to-Work, RoutePower, Sabre, ScanPlus, ShopScan, Smart Mobile
Computing, SmartSystems, TE 2000, Trakker Antares, and Vista Powered are either trademarks or registered
trademarks of Intermec Technologies Corporation.

There are U.S. and foreign patents as well as U.S. and foreign patents pending.

Wi-Fi is a registered certification mark of the Wi-Fi Alliance.

ii Basic Reader Interface Programmer’s Reference Manual

Document Change Record
This page records changes to this document. The document was originally released
as version -001.

Version
Number

009

008

007

006

005

Basic Reader Interface Programmer’s Reference Manual

Date

1/2011

10/2009

7/2009

4/2009

9/2008

Description of Change

Updated the manual to support BRI Version 3.14 of the BRI Spec.

* Added “attribute antennas and “cap antenna” syntax to
support bistatic antenna operations for the IF2 Network
Reader

* Added RNSI, SNR, and CHANNEL keywords
¢ Added BLOCKPERMALOCK command
¢ Added NXP, Fujitsu, and Impinj tag extensions

Manual was revised to support the new ETSI standard for RF
products.

Updated the manual to support BRI Version 3.14 of the BRI Spec.
* Added two new battery events
* Updated KILL password description

Updated the manual to support BRI Version 3.12 of the BRI Spec.
* Updated keywords reserved for command parameters

* Updated keywords reserved for reader attributes

¢ Added DIAGNOSTICS command

¢ Added SESSIONS attribute

* Added BRI command aliases

Updated the manual to support BRI Version 3.11 of the BRI Spec.
* Added NXPREADPROTECT, NXPEAS, NXPALARM support
« Updated CAPABILITIES for NXP support

¢ Added the EPCC1G1 tagtype

* Increased TRIGGER support

iii

iv

Version
Number

004

003

002

Date

05/2008

09/2006

04/2006

Description of Change

Updated the manual to support BRI Version 3.00, 3.01, and 3.10
of the BRI Spec. Note that any commands, attributes, or
functions introduced in newer BRI versions will not work on
older BRI versions.

Revisions made in BRI Version 3.00 include:

* Power-up sequence and BOOT macro removed.

* RESET, FACDFLT, and VERSION commands updated.
* LBTSCANENABLE and LBTCHANNEL updated.

* READ, WRITE, LOCK, KILLTAG, and PROTECT commands
update with inline TAGTYPE support.

¢ Added PLATDFLT and HWCC command.

¢ Added EVT:RESET to the list of event messages.
e TRIGGER ACTION enhancements documented.
* CTI command removed.

Revisions made in BRI Version 3.01 include:

¢ Added BTPWROFF attribute.

Revisions made in BRI Version 3.10 include:

* Added RSSI data field.

¢ Added CAPABILITIES and ERASE command.

* Added WRITEGPIO single-pin definition.

¢ Removed UTIL SINGULATE, IDENTIFY, and TAGTYPE.
* Added data field requirement to WRITE.

Updated the manual to support the BRI Version S:
* Added support for access passwords.
* Introduced support for ISO 18000-6C Ulls.

* Added LOCK command and updated it for use only with ISO
18000-6C UII tags.

* Updated WRITE command to include LOCK functions.
¢ Added KILLTAG, VERSION, and RESET commands.

¢ Added an action macro to the TRIGGER command.

* Introduced BIT data type.

¢ Added PROTECT command.

* Updated PING command to include TIMESTAMP.

* Updated READ command so that it is possible to get
TAGTYPE as part of the reported data returned.

* Updated the FIELDSTRENGTH attribute to include dB
values.

e Introduced EPCglobal Class 1Gen 1 as a valid TAGTYPE and
generally updated the TAGTYPE command.

¢ Introduced HWID, HWPROD and HWREGION commands.

Updated the manual to support the BRI Version R.

Basic Reader Interface Programmer’s Reference Manual

Contents

Contents

Before You Begin o xi
Safety Information i xi

Global Services and SUPPOLtttt Xi
Warranty Information i x1

Web SUPPOIt. ... xi

Telephone SUPPOITo xi

Who Should Read This Manual it xil
Related Documents i Xii

1 Introducing the Basic Reader Interface. .. 1
Overview of the Basic Reader Interface i i, 2
What's NeW?. . ..o e e 2
General Features of the BRI Architecture........ 2

Two Typical BRI Usage SCenariosouuiuuuiitii it 2
BRITCP APPLICALIONS ..ottt ettt e et e e e e e e e e e 3
Choosing a TCP Port for an Application Using TCP................... ..., 3
Resetting the Reader to the Factory Default Configuration 3
Identifying the Version of BRIon Your Reader.......... 5
Conventions Used in This Manual i)
2 Designing Robust BRI Applications................ 7
Before You Begin Programmingo 8
Managing RFID Configurationoiuiutiuiitiniaiiiiiaiiaeanann .. 8

Using the RFID Resource Kit...... ... i 9
Recommended Software StrUCtULe.ttt 9
Programming the BRI Message Layer........ ... i, 11
BRI MesSage TyPes. ..ot 11

BRI Command ProCessoruuuiuti it 12

BRI Asynchronous Event Handler o i 12
Response Handler. 12
Programming the BRI Transport Layer..........o i, 12
Transport OPerationututtt ittt 12
Transport Initialization. i 13
Multi-Threaded Implementation i i 13

Basic Reader Interface Programmer’s Reference Manual v

Contents

3 Understanding BRI ProgrammingElements .. 15
BRI Logical Interface 16
Using Message Checksums. 16
Reserved Keywords 17

Keywords Reserved for BRICommands, 17
Keywords Reserved for Command Parameters 18
Keywords Reserved for Reader Attributes. L 20
Keywords Reserved for Reader Error and Success Responses 21
COMSTANTS ..o 22
Data Field Definitions 22
ANTENNA L . 22

AR 22
BIT(memory_bank:startbit, bits) 23
COUN T . L 23

EPCID .o 23
HEX(memory_bank:address, length). 24

INT (memory_bank:address, length) 25
ISOUIL. .o 26

R 27
STRING(memory_bank:address, length) 27
TAGTYPE .. 28

TIME . 28

Data Conditionsi.ii 28
Using Native Tag Selector Logic in Data Conditions 29

Using AND/OR Logic in Data Conditionsooiiiiuiuiniiieaeanan.. 30

Using the AND and OR Keywords. i, 31

Grouping Expressions Without Using Parentheses 32

Multi-Protocol Condition Usaget 32

4 BRICommands 33

BRI Commands 34

ATTRIBUTE. ... 34

Changing the Reader Attributes. 34

Reading the Reader Attributes oL 36
BLOCKPERMALOCK . ..o 36
BLOCKPERMALOCKREAD. 38
BRIVER . . 38
CAPABILITIES . .o e e 39
DIAGINOSTICS. . oo e e e e e e 42
ERASE . . 43
FAC D LT . 44
HELP . o 44
HW CC . o 44
HW D 44

vi Basic Reader Interface Programmer’s Reference Manual

Contents

HWPRO DD . . 44
HWREGION .o e e e e 45
H W VER . 46
KILLTAG. . oo e e e e 46
LO K . 46
PING . o 47
PLAT D ELT . . o 48
PRIN T 48
PROTECT . . o e 48
RE A DD . 50
READGPI .. 55
REPE AT . 56
RESE T 57
SE T o 57
SV B R 59
TRIGGER . . . 59
TRIGGERCANCELo 62
TRIGGERQUEUE 62
TRIGGERREADYo e 62
TRIGGERWAIT. ... 63
VERSION . . 64
W RI T E . o 64
WRITEGPO . .. 68
BRI Extensions for NXP Tags.ouiuuiuiiii e 69
NXPALARM . .« oo 69
NXPCONEFIG. . . oot e e 70
NXPEAS 70
NXPREADPROTECT 70
BRI Extensions for Fujitsu Tagso 70
FJIBURSTERASE e 70
FIBURSTWRITE. . . .o e e e e 71
FJCHGBLOCKGROUPPWD 71
FJCHGBLOCKLOCK. . . . oottt e e e 72
FJCHGWORDLOCK . . .o e 72
FJREADBLOCKLOCK. . . . ot e 72
BRI Extensions for ImpinjMonza 4 Tags 73
READ IMPINJQT . .o 73
WRITE IMPINJQT . .« oot e e e e 73
Understanding [READ FIELD] and [WRITE FIELD] Parameters.ooouou... 74
[READ FIELD| Examplesoiuiuii e 74
[WRITE FIELD| Examples 74
Understanding the <ATTRIBUTE NAME> Parametercouiuiiiiiiiinan.... 75
ANTENNAS or ANTS ..o oo 75
ANTTIMEOUT ... 76
ANTTRIES . . 76
BAU DD . L 76
BTPWROFEE . .o 76
CHERKSUM . e 77

Basic Reader Interface Programmer’s Reference Manual vii

Contents

viii

DENSEREADERMODE 77

ECHO o 77
EPCCIG2PARAMETERS e 78
FIELDSEP. . . o 78
FIELDSTRENGTH e 78
IDREPORT 79
IDTIMEOUT . .o e e 80
IDTRIES .. 80
INTTIALQ .+« o e oo e e e e e e e e 80
INITTRIES . . .o e 81
LBTCHANNEL . ..o 81
LBTSCANENABLE . .. e 81
LOCKTRIES. 82
NOTAGRPT . . e e e 82
RDTRIES .. 82
RPTTIMEOUT ... e 82
SCHEDULEOPTo e 83
SELTRIES 83
SESSION. . . 84
TAGTYPE . 84
TIMEOUTMODE. o 85

0 0 85
UNSELTRIES. . . 86
XONXOFEF . . 86
WRTRIES . .. 86
Understanding the Timeouts and Tries.t 86
Setting IDTIMEOUT and ANTTIMEOUTo i, 87

When IDTIMEOUT <= ANTTIMEOUTcotiiiiiiiiiiiiiiaann. 87

When IDTIMEOUT > ANTTIMEOUT. 87

Setting IDTRIES and ANTTRIES. i 88

When IDTRIES < ANTTRIESttt 88

When IDTRIES >= ANTTRIES. 88

Setting INITTRIES. e 89
Understanding the [LITERAL| Parameter.o.oiuiiuiiiiiiiiiiiiaiaen. 90
Reading and Writing STRING Fields. 91
Understanding ACCESS and KILL Passwords............ ... 92
Memory Bank 3 User Memoryo 92
Memory Bank 2 TID MemOIyoiuiiti i 93
Memory Bank 1 EPCID MemoOryouuiutitt it 94
Memory Bank 0 PASSWORD Memoryoutiuiuiiiiiii i 95
Understanding Error and Success Responses. i 96
Understanding EVENT MeSSagesouiuiiitii it 97
Understanding the Format of BRI Command Responses.................... 99
Creating and Using BRIMacros 100
Creatinga Command Macro.......... ... 100

Basic Reader Interface Programmer’s Reference Manual

Contents

Executinga Command Macro. i 100
Creating a Parameter Macroottt 101
Executing a Command With a Parameter Macro.................................. 101

Listing All Macros Stored in Memory ..., 101
Displaying the Contents of aMacro, 101
Deleting a Macro.t 102

5 Reader-Specific Platform Specifications 103
Reader-Specific Platform Specifications i i 104
ITRExxx01 Readers. e 104
BRI Disabled by Default........... 104
Features Not Implemented. i i 104

Buffer Sizes. 104
Memory Management. 105

Error ReSpOmses.o 105
ANRIINAS . ¢ ettt 105

GPIO . 105

Reader Attributes 105

BRI Commands. 105
EVENT RESPOIISES .« .ottt ittt ittt 106
Phillips VILIO TAG TYPe. . .ottt 106
Readers That Contain the IMS Module. i i 106
Buffer Sizes. 106
ANCENNAS . ..ottt 106

GPIO . 107

Reader Attributes 107
FACDFLT Command.t 107
Readers That Contain the IM4 Module. i, 107
WRITEGPI Command. 107
READGPI Command.o.uiuiit e 108
TRIGGER Command 108
ANTEIIIAS . . .ottt 108
ANTENNA Data Type Definition ..., 108

ANTENNAS or ANTS Attribute i, 109

Sensing an Over-Temperature Condition., 109

I Index .. 111

Basic Reader Interface Programmer’s Reference Manual ix

Contents

b'¢ Basic Reader Interface Programmer’s Reference Manual

Before You Begin

Before You Begin

This section provides you with safety information, technical support information,
and sources for additional product information.

Safety Information

Your safety is extremely important. Read and follow all warnings and cautions in
this document before handling and operating Intermec equipment. You can be
seriously injured, and equipment and data can be damaged if you do not follow the
safety warnings and cautions.

This section explains how to identify and understand cautions and notes that are in
this document.

A caution alerts you to an operating procedure, practice, condition, or
statement that must be strictly observed to prevent equipment damage or

. destruction, or corruption or loss of data.
Caution

Note: Notes either provide extra information about a topic or contain special
instructions for handling a particular condition or set of circumstances.

Global Services and Support

Warranty Information
To understand the warranty for your Intermec product, visit the Intermec web site at
www.intermec.com and click Support > Returns and Repairs > Warranty.

Disclaimer of warranties: The sample code included in this document is presented
for reference only. The code does not necessarily represent complete, tested
programs. The code is provided “as is with all faults.” All warranties are expressly
disclaimed, including the implied warranties of merchantability and fitness for a
particular purpose.

Web Support

Visit the Intermec web site at www.intermec.com to download our current manuals
(in PDF).

Visit the Intermec technical knowledge base (Knowledge Central) at
intermec.custhelp.com to review technical information or to request technical
support for your Intermec product.

Telephone Support
In the U.S.A. and Canada, call 1-800-755-5505.

Outside the U.S.A. and Canada, contact your local Intermec representative. To
search for your local representative, from the Intermec web site, click About Us >
Contact Us.

Basic Reader Interface Programmer’s Reference Manual xi

http://www.intermec.com
http://www.intermec.com
http://www.intermec.com
http://intermec.custhelp.com

Before You Begin

Service Location Support
For the most current listing of service locations, click Support >Returns and
Repairs > Repair Locations.

For technical support in South Korea, use the after service locations listed below:

AWOO Systems

102-1304 SK Ventium

522 Dangjung-dong

Gunpo-si, Gyeonggi-do Korea, South 435-776
Contact: Mr. Sinbum Kang

Telephone: +82-31-436-1191

Email: mjyunkang@awoo.co.kr

IN Information System PTD LTD

6th Floor

Daegu Venture Center Bldg 95

Shinchun 3 Dong

Donggu, Daegu City, Korea

Email: jmyou@idif.co.kr or korlim@gw.idif.co.kr

Who Should Read This Manual

Related Documents

Xii

This programmer’s reference manual is for the person who is responsible for using
Basic Reader Interface (BRI) commands to manage RFID readers. This manual
describes BRI commands and programming concepts.

Before you work with the BRI, you should be familiar with your RFID reader, RFID
system, and RFID concepts such as tag types.

The Intermec web site at www.intermec.com contains our documents (as PDF files)
that you can download for free.

To download documents
1 Visit the Intermec web site at www.intermec.com.

2 Click the Products tab.

3 Using the Products menu, navigate to your product page. For example, to find
the CN3 computer product page, click Computers > Handheld Computers >
CN3.

4 (Click the Manuals tab.

If your product does not have its own product page, click Support > Manuals. Use
the Product Category field, the Product Family field, and the Product field to
help you locate the documentation for your product.

Here is a list of third-party documents that you might find useful. The first two are
available on the EPCglobal Inc. web site at www.epcglobalinc.org. The third is a
Phillips document.

* EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for
Communications at 860 MHz — 960 MHz Version 1.1.0

Basic Reader Interface Programmer’s Reference Manual

http://www.intermec.com
http://www.intermec.com

Before You Begin

* EPC™ Tag Data Standards Version 1.3 Implementation of EPC Tag Data on U-Code EPC
1.19 Version 1.0 June 2004

* Implementation of EPC Tag Data on U-Code EPC 1.19 Version 1.0 June 2004

Basic Reader Interface Programmer’s Reference Manual xiii

Before You Begin

xiv Basic Reader Interface Programmer’s Reference Manual

L

Introducing the Basic Reader
Interface

This chapter introduces the Basic Reader Interface (BRI). This chapter
contains these sections:

Overview of the Basic Reader Interface

Two Typical BRI Usage Scenarios

BRI TCP Applications

Resetting the Reader to the Factory Default Configuration
Identifying the Version of BRI on Your Reader

Conventions Used in This Manual

Chapter 1 - Introducing the Basic Reader Interface

Overview of the Basic Reader Interface

What'’s New?

This programmer’s reference manual defines the architecture of the Basic Reader
Interface (BRI) intended for use with Intermec RFID readers. The BRI is an RFID
scripting language that was developed to improve an RFID programmer’s
productivity, and to reduce the time required to develop RFID applications. RFID
programmers can use the BRI protocol to write programs that communicate with
Intermec RFID devices. With the BRI, programmers can configure RFID control
parameters, define event triggers, and perform tag operations.

This programmer’s reference manual supports the Basic Reader Interface Version
3.14, which contains these enhancements:

* Added “attribute antennas and “cap antenna” syntax to support bistatic antenna
operations for the IF2 Network Reader.

* Added RNSI, SNR, and CHANNEL keywords.
* Added BLOCKPERMALOCK command.
* Added NXP, Fujitsu, and Impinj tag extensions.

General Features of the BRI Architecture

The BRI architecture meets these design criteria:
* Provides an ASCII-only command set. The commands are human-readable.

* Provides a simple command/reply operations, and asynchronous event
messages.

» Allows presentation on a variety of physical interfaces such as serial, Bluetooth,
and Ethernet.

* Allows configuration of the general purpose input and output (GPIO) interface
of a reader device.

* Contains a command set that is flexible and can expand to accommodate
specific reader variations and allow for future expansion and reader features.

Two Typical BRI Usage Scenarios

The BRI is typically used as a computer-to-computer programming interface. The
BRI can be accessed via either a serial RS-232 connection or a TCP connection. In
general, a reader that supports Ethernet or a Wi-Fi® radio makes BRI accessible via
TCP; otherwise, the reader provides a serial interface to the BRI. For example:

* The IF4 fixed reader has only a serial interface.
* TheIF61 and IF30 fixed reader have a TCP interface.

* TheIP30 has a USB or Bluetooth connection, but the BRI is accessed through a
TCP connection to a handheld computer.

Basic Reader Interface Programmer’s Reference Manual

Chapter 1 - Introducing the Basic Reader Interface

You can also use the BRI interactively as a tool for trial, experimentation, and
diagnostics. There are a number of tools available that let you access the BRI
interactively:

* TheIF61 web browser interface lets you enter BRI commands in the BRI
Window. For help, see the IF61 Fixed Reader User's Manual.

* HyperTerminal or another terminal emulation program for serial connections

e Telnet Client for TCP connections

BRI TCP Applications

If your BRI application uses a TCP connection to communicate with the reader, you
need to understand TCP ports which are described in the following sections.

Also, be aware of any notes in this manual marked by these phrases:
* “For BRI Applications Using TCP”

* “If your BRI application communicates with the reader over a TCP connection”

Choosing a TCP Port for an Application Using TCP

Your reader listens for BRI connections on TCP port 2189, by default. You can
choose another TCP port. For example, when configuring the IF61 fixed reader, you
can enter another port in the BRI TCP Port field in the web browser interface. For
detailed information about choosing a TCP port, see the user’s manual for your
reader.

Resetting the Reader to the Factory Default Configuration

You can reset the reader to its factory default BRI configuration settings such as
attributes and triggers with the FACDFLT command. This command has no
parameters.

FACDFLT<CRLF>
If checksums are enabled, use this command instead:
FACDFLTF4<CRLF>

To learn more about checksums, see “Using Message Checksums” on page 16.

You can use this command to display the current values for the reader attributes on
your reader:

ATTRIBUTE<CRLF>
The following table lists the default value for each reader attribute.

Default Factory Configuration

Reader Attribute Default Value
ANTS 1
ANTTIMEOUT 50
ANTTRIES 3

Basic Reader Interface Programmer’s Reference Manual 3

http://epsfiles.intermec.com/eps_files/eps_man/935-011.pdf

Chapter 1 - Introducing the Basic Reader Interface

Default Factory Configuration (continued)

Reader Attribute Default Value
BAUD 115200
BTPWROFF 300
CHKSUM OFF
DENSEREADERMODE OFF
FIELDSEP ASCII space character (0x20)
FIELDSTRENGTH 30dB, 30dB, 30dB, 30dB
IDREPORT OFF
IDTIMEOUT 100

IDTRIES

INITTIALQ 4

INITTRIES

NOTAGRPT OFF
RDTRIES 3
RPTTIMEOUT 0

SELTRIES 1

SESSION 2

TAGTYPE EPCC1G2
TIMEOUTMODE OFF

TTY OFF
UNSELTRIES 1

WRTRIES 3

Note: Not all BRI devices support all of these attributes (such as BTPWROFF and
BAUD).

Note: The ANTTIMEOUT and IDTIMEOUT attributes are displayed only if
TIMEOUTMODE is enabled. By default, TIMEOUTMODE is disabled and
ANTTRIES and IDTRIES are displayed. For help, see “Understanding the
Timeouts and Tries” on page 86.

Q2

4 Basic Reader Interface Programmer’s Reference Manual

Chapter 1 - Introducing the Basic Reader Interface

Identifying the Version of BRI on Your Reader

You should identify the version of BRI software on your reader before you contact
Intermec Technical Support.

You can use the BRIVER command, described on “BRIVER” on page 38, to display
the BRI version.

This manual supports the Basic Reader Interface Version 3.14 and covers features
that are not available in older versions of BRI software. If you have an older version
of BRI software, see your Intermec representative for help upgrading BRI.

Conventions Used in This Manual

The example BRI commands and responses in this manual make these assumptions:

The attribute TTY is disabled, which is the default. The host interface terminates
all commands with a <CRLF> (carriage-return, line-feed). For details, see “TTY”
on page 85.

The attribute CHKSUM is disabled, which is the default. The BRI does not

return checksums for each line of output. For details, see “Using Message
Checksums” on page 16.

The attribute IDREPORT is disabled, which is the default. The tag identifiers are
not displayed in the response to a READ or WRITE command. For details, see
“IDREPORT?” on page 79.

The attribute NOTAGRPT is enabled, which is not the default. A message is sent
to notify you when no tags were found to operate on. For details, see
“NOTAGRPT” on page 82.

The field separator is assumed to be set to the space character.

The command syntax descriptions in this manual follow these formatting
conventions:

Parameters in brackets [| are optional.

Parameters in angle brackets < > are required.

Basic Reader Interface Programmer’s Reference Manual 5

Chapter 1 - Introducing the Basic Reader Interface

6 Basic Reader Interface Programmer’s Reference Manual

Designing Robust BRI Applications

This chapter introduces guidelines for designing applications with a robust
BRI interface that can successfully control any BRI-capable Intermec reader
and handle a variety of conditions. This chapter contains these sections:

* Before You Begin Programming

* Recommended Software Structure

* Programming the BRI Message Layer

* Programming the BRI Transport Layer
* Multi-Threaded Implementation

Chapter 2 — Designing Robust BRI Applications

Before You Begin Programming

A BRI host application is an application that uses the BRI protocol to control an
RFID reader to conduct RFID operations. An application with a robust BRI
interface should successfully control any BRI-capable Intermec reader and handle a
variety of conditions. This chapter explains how to achieve a robust BRI application.

Before you begin programming, you need to make two decisions:

» Will the BRI host application manage all RFID configuration parameters, or will
you use a configuration management application such as SmartSystemsTM
Foundation? For details, see the next section, “Managing RFID
Configuration.”

* Will you use the RFID Resource Kit, available as a download from the Intermec
Developer Library (IDL)? For details, see “Using the RFID Resource Kit” on

page9.

Managing RFID Configuration

You need to decide whether the BRI host application will manage all RFID
configuration parameters, or whether a configuration management application
such as SmartSystems Foundation will manage all RFID configuration parameters.

Here are the advantages of using SmartSystems Foundation (or a similar
application) for RFID configuration:

* Extensibility. The RFID data flow is separated from the RFID configuration
management. The host application focuses on managing RFID data flows. You
use the SmartSystems interfaces to manage the configuration changes which
may be required for upgrades or system tuning.

* Scalability. The host application can be designed to operate independently of
device-specific values, such as the device address and name. Adding additional
RFID readers to the system will not impact the host application software.

* Maintainability. Separating the data flow from the configuration management
makes it easier to isolate problems. It is also easier to replace existing hardware
for repairs.

Here are the advantages of integrating RFID configuration into your BRI
application:

* Rapid development.

* Minimize third-party dependence. You eliminate your dependency on
Intermec product support.

If you decide to separate RFID configuration from the BRI host application, then
the host application should only set BRI attributes that are essential to the
application. For example, the BRI host application may set BRI attributes that
manage dynamic control of the reader (such as the ANTENNA attribute, which
manages switching between antennas). For details about attributes, see
“Understanding the <ATTRIBUTE NAME> Parameter” on page 75.

8 Basic Reader Interface Programmer’s Reference Manual

Chapter 2 — Designing Robust BRI Applications

Using the RFID Resource Kit

You can use the RFID APIs to provide an abstraction layer between Intermec RFID
devices. This will ensure compatibility with all Intermec BRI readers and future
enhancements to BRI. The RFID APIs are included in the RFID Resource Kit, which
you can download from the Intermec Developer Library (IDL).

To download the RFID Resource Kit

e From the Intermec web site at www.intermec.com, select Products > Software
and Tools > Developer Library > Developer Resource Kits.

If you cannot use the RFID Resource Kit, you should implement the software
structure described in this chapter.

Recommended Software Structure

This section describes a design for software that communicates with a BRI reader.
Follow this design if you need to develop your own implementation without the
RFID Resource Kit.

This software structure has distinct Message and Transport layers, which are
described in “Programming the BRI Message Layer” on page 11 and
“Programming the BRI Transport Layer” on page 12.

Basic Reader Interface Programmer’s Reference Manual 9

Chapter 2 — Designing Robust BRI Applications

Message Layer

BRI
Ansynchronous
Event Handler

BRI
asynchronous
event

BRI command
BRI response line

command

Response

processor handler
Transport
error
BRI
command Response
line

Transport layer

Optional:
append
checksum

Optional:
remove
checksum

Initialize
reader

Append
end-of-line

Input
stream

Transport (serial or TCP)

Recommended Software Structure: If you are not using the RFID Resource Kit, your BRI
application should follow this structure.

10 Basic Reader Interface Programmer’s Reference Manual

Chapter 2 — Designing Robust BRI Applications

Programming the BRI Message Layer

When programming the BRI Message Layer, you need to understand the message
types and how they are handled.

BRI Message Types

The BRI protocol includes three message types:
* BRI Command. This message type is a single BRI command sent to a reader.

* BRI Command Response. This message type is the reader’s response to a BRI
command. There are two types of BRI Command Response messages:

* Command Error Response: An error response consists of two lines, one
error line followed by one OK> response terminator. The error line may be
formatted in three ways:

ERR
ERR <keywords
CKERR

These errors do not indicate that the entire command has failed. They

§ Note: The BRI specification also defines field-level errors, such as WRERR.
indicate that only part of the command failed.

For a list of all errors, see “Understanding Error and Success Responses”
on page 96.

* Normal Command Response: Any command response that is not an error
response is a Normal Command Response. It consists of zero or more BRI
response lines followed by one OK> response terminator line. In general, the
normal command response syntax is as follows:

ResponseLine<CRLF>

ResponseLine<CRLF>

OK><CRLF>

As described in the previous note, the Normal Command Response also
includes any field-level errors.

* Asynchronous Event Messages. This message type is a single line message that
is not a response to a command. Each asynchronous event begins with the EVT:
prefix. An asynchronous event may occur between lines of another message. In
general the asynchronous event syntax is as follows:

EVT:<Type> <EventDetails><CRLF>

Asynchronous event messages are single-line messages. They are not followed by
their own OK> line. For more details about EVENT messages, see
“Understanding Error and Success Responses” on page 96.

Basic Reader Interface Programmer’s Reference Manual n

Chapter 2 — Designing Robust BRI Applications

BRI Command Processor

A BRI Command Processor composes BRI Command strings for the application and
sends them to the transport layer. It receives and accumulates BRI Command
Response lines until it receives the OK> line marking a complete BRI Command
Response. Responses are received in the order in which their corresponding
commands were sent.

You can parse a normal command response line into data fields by separating the
line at each field separator character that is not inside a quoted string.

BRI Asynchronous Event Handler

A BRI Asynchronous Event Handler must handle all types of BRI Asynchronous
Events used by the application. It should quietly discard event types it does not
recognize.

Response Handler

A Response Handler handles all incoming lines by sending:
* alllines that start with EVT: to the BRI Asynchronous Event Handler.

 all other lines to the BRI Command Processor as command response lines.

Programming the BRI Transport Layer

When programming the BRI Transport Layer, you need to understand transport
operation and initialization.

Transport Operation

The Transport Layer appends an end-of-line to each outgoing message. It
continually monitors the input stream, accumulating complete input lines and
sending them to the Message Layer.

For serial transport implementations that use message checksums the Transport
Layer also adds checksums to outgoing commands and verifies and removes
checksums from incoming message lines. The command processor should be
notified of transport failure when an incoming checksum is wrong. For details
about checksums, see “Using Message Checksums” on page 16.

The detailed processing steps of the Transport Layer are:

1 (Optional) Append checksum. This optional step may be used only over a serial
connection to a reader. Sum the binary value of the characters in the message,
encode the least significant 8 bits of the sum as a two-digit hexadecimal value,
and append the two digits to the end of the message.

2 Append end-of-line character. Append a <CRLF> to mark the end of the message
in the output stream.

3 Extract lines from input stream. Accumulate input characters until the end-of-
line is received, and then send the complete response line to the Response

12 Basic Reader Interface Programmer’s Reference Manual

Chapter 2 — Designing Robust BRI Applications

Handler. Lines must be separated in some way, such as preserving the <CRLF>s
or converting each line into a separate string.

4 (Optional) Remove and verify the checksum. Remove the last 2 characters from
the message line and interpret them as an 8-bit hexadecimal value. Compare the
value to the least significant 8 bits of the sum of the rest of the message. If the
comparison fails, there is no way to tell the reader to resend a line. Instead, you
should notify the Message Layer of a communication failure.

Transport Initialization

A BRI application should assume as little as possible about the state of the RFID
reader when it first connects to the reader. The application can overcome some
unexpected prior states of the reader by sending a few BRI commands to initialize
the reader before entering normal operation.

Immediately after establishing data transport with the reader, the BRI Transport
Layer may send an initialization command sequence to the reader and then
consume the input stream until it receives the expected number of OK><CRLF>
response terminators.

The initialization command sequence depends on the type of transport you are
using. To confirm connectivity and expected operation of the RFID reader, use the
BRIVER command. For help, see “BRIVER” on page 38.

Multi-Threaded Implementation

You can implement the Message Layer and Transport Layer using multiple threads.
In most cases, you can follow this design, which includes three threads:

* BRI Command Processor Thread. This thread calls the BRI Command
Processor to execute a BRI command. Once a BRI command is sent to the reader
via the transport layer, the Command Processor Thread usually blocks waiting

for the OK> BRI response terminator to be returned by the Input Message
Thread, described next.

* Input Message Thread. It is best to maintain a separate thread that always
monitors responses and events from the reader. This input thread routes
messages based on whether they are command responses or asynchronous event
messages. Typical processing logic for the Input Message Thread is defined by
the following pseudo-code:

While connected to reader {
Read line from input stream
If input line begins with “EVT:” then
Send line to BRI Event Handler
Else
Send line to BRI Command Processor

Basic Reader Interface Programmer’s Reference Manual 13

Chapter 2 — Designing Robust BRI Applications

14

You should design the Input Message Thread such that a single pass through the

read loop executes quickly. An input line is read and then passed on to another
thread for further processing.

BRI Event Handler Thread. Since the Input Message Thread must execute
quickly. it may be useful to use a separate thread to handle BRI events. The Input
Message Thread quickly stores a new message in a queue and the Event Handler
Thread removes messages from the queue as soon as it can get to them.

Basic Reader Interface Programmer’s Reference Manual

3

Understanding BRI Programming
Elements

This chapter introduces various programming elements of the BRI. This
chapter contains these sections:

* BRI Logical Interface

* Using Message Checksums
* Reserved Keywords

* Constants

* Data Field Definitions

e Data Conditions

Chapter 3 — Understanding BRI Programming Elements

BRI Logical Interface

The BRI is an RFID reader interface that uses this command/response structure:
1 An external host sends the reader a command.
2 The reader executes the command.
3 The reader responds to the host.

Both the commands and responses use ASCII characters followed by a terminator.
The default terminator is a carriage return/line feed (<CRLF>) character sequence
and can be changed if required. For help, see “TTY” on page 85.

There is no timing associated with sending a command to the BRI. The BRI waits
indefinitely for the command terminator before executing the command.

Using Message Checksums

16

Beyond the command/response terminators, you can also use message checksums
to enhance the communication resilience between the external host and reader.

All data sent to and returned from the BRI is returned as printable ASCII characters.
Except for the command and response delimiters, these are <CRLF> by default, the

XON and XOFF start and stop characters, or other non-printable ASCII characters

as defined by the user.

Certain applications may require an additional level of data verification. In order to
provide an increased level of data integrity, you can enable a BRI attribute that
allows message checksums to be added to data sent to and from the BRI. The
checksum value is sent or returned as two ASCII-readable characters and represents
a modulo 256 summing of the command or response, up to but not including the
response delimiter characters. The checksum shall be calculated and then returned
as two ASCII characters representing the hex value of the modulo 256 sum. The field
separator character is inserted just before the checksum and is included in the
checksum calculation.

READ TAGIDAS5<CRLF>
0123456789ABCDEFh OA<CRLF>

In this example, the checksum value for the response is 0x40A. The response
checksum is returned as the two least significant characters of the modulo 256
calculated checksum. In this case, the characters 0 and A are returned.

You enable both command and response message checksums when you enable the
attribute CHKSUM. If a checksum error is detected on an incoming message, the
BRI returns an error message CKERR to the host. For commands, the checksum is
done on all characters up to the actual checksum itself. If you decide to put an ASCII
space character before the checksum value, you must include that space character in
the checksum calculation.

Basic Reader Interface Programmer’s Reference Manual

%

Chapter 3 — Understanding BRI Programming Elements

You can use this case-sensitive command to turn off checksums:

ATTRIBUTE CHKSUM=OFFB7<CRLF>

If TTY is disabled, you should terminate this ATTRIBUTE command by pressing
Ctrl-J (<LF>). For details, see “TTY” on page 85.

Note: If your BRI application communicates with the reader over a TCP connection,

TTY is always disabled.

Reserved Keywords

This section briefly describes the keywords reserved for use by the BRI. Other
sections in this manual contain more details about keyword usage.

Keywords Reserved for BRI Commands

The following table lists the keywords reserved for BRI commands.

Keywords Reserved for BRI Commands

Keyword

ATTRIBUTE or ATTRIB
BRIVER

CAPABILITIES or CAP
DIAGNOSTICS or DIAG
ERASE

FACDFLT

HELP

HWCC

HWID

HWPROD
HWREGION
HWVER
KILLTAG
LOCK

PING
PLATDFLT
PRINT
PROTECT

R, RD, or READ

READGPI, RDGPI,
RDGPIO, or READGPIO

REPEAT or RPT
RESET

Basic Reader Interface Programmer’s Reference Manual

Description

Reads or sets RFID reader attributes.

Returns the BRI specification version or feature level
supported by reader or module.

Returns the capabilities of the RFID reader.

Determines certain runtime characteristics of an RFID reader.
Allows you to perform a block erase of an EPC Gen 2 tag.

Sets factory default values for attributes.

Lists all BRI commands supported by the reader.

Returns the country code of the reader.

Returns a unique identifier that represents the reader
hardware instance.

Returns the product name of the reader device.

Returns the region data for the reader device.

Returns the board version level of the reader device.

Supports the EPC Class 1 Gen 2 KILL operation.

Maintains backward compatibility with previous BRI versions.
Checks if a reader is available.

Returns your reader to the platform defaults.

Displays the contents of a macro.

Allows you to turn memory access locks on or off.

Reads information from one or more tags.

Reads the current general purpose input port values.

Re-issues the last READ or WRITE command.

Causes the reader to execute a warm boot.

17

Chapter 3 — Understanding BRI Programming Elements

Keywords Reserved for BRI Commands (continued)

Keyword Description

SET Creates, lists, and deletes macros.

SWVER Returns the current firmware version.

TRIGGER or TRIG Defines a trigger based on time or a general purpose I/O
signal.

TRIGGERQ, TRIGQ, Checks the trigger event queue for events that are currently

TRIGQUEUE, or stored.

TRIGGERQUEUE

TRIGGERREADY, Transitions the reader’s event queue to the READY state;

TRGRDY, TRIGREADY, or enables the asynchronous reporting of the oldest trigger event

TRIGGERRDY

in the reader’s event queue.

TRIGGERWAIT, TRIGW, This command is no longer available. Use TRIGGERREADY
TRIGWAIT, or TRIGGERW instead.

VERSION or VER
W, WR, or WRITE

Displays the reader firmware version.

Writes information to one or more tags.

WRITEGPO, WRGPO, Writes the general purpose output values.
WRGPIO, or WRITEGPIO

Note: The TRIGGERWAIT command is no longer available. Because the term “wait”

§ is confusing, the TRIGGERWAIT command has been replaced by the
TRIGGERREADY command. The TRIGGERWAIT command remains in the BRI for
backward compatibility. Intermec recommends that you use TRIGGERREADY.

Keywords Reserved for Command Parameters

The BRI command syntax defines several reserved keywords to express parameters
for each of the BRI commands. The following table lists the reserved keywords,
special characters, and their meaning.

Keywords Reserved for Command Parameters

Keyword or
Special Character

1=
\n
\r

\XxXX

«»

<

>

ACTION

AND

18

Description

Not equal to.

Defines a line feed value.
Defines a carriage return value.
Defines an octal character.

Double quotes are the default characters to define simple text string
values.

Less than.
Equal to.
Greater than.

When used in defining a TRIGGER, this keyword can be used to have
the trigger execute a command based on a defined macro.

Performs a logical AND operation of statements in a WHERE clause.

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

Keywords Reserved for Command Parameters (continued)

Keyword or
Special Character

ANTENNA or
ANT

CHANNEL
COUNT

EPCID

FILTER or FILT
HEX

INT
ISOUII or UII

NOT

OR
PERMANENT
RNSI

RSSI

SNR

STRING or STR
TAGID
TAGTYPE
TIME

WHERE

Description

Specifies that the command should return the antenna used during the
READ or WRITE command.

Shortcut name to this keyword is CHAN. This keyword is an integer
data field that specifies the channel frequency on which the tag was
identified.

Indicates the number of times a tag was seen in the current inventory
round.

Shortcut for data type HEX(1:4,L), the EPC field on an EPCglobal Class
1 Gen 2 /ISO 18000-6C tag.

Specifies the time required to delay after a defined I/O event occurs
prior to resuming processing of the event. Used only by the TRIGGER
command.

Defines a hexadecimal field.
Defines a 1, 2, 3, or 4 byte unsigned numeric field.

Keyword that is returned when the tags in the field of view are
inventoried.

Logical inverse operation.
Performs a logical OR operation of statements in a WHERE clause.
Permanently locks or unlocks a specified memory bank.

Negative numeric data field associated with the received noise strength
of a tag being returned for the current tag operation. Values are
measured in dBm. Larger values indicate louder noise, while smaller
values indicate quieter noise.

Determines the received signal strength of a tag being returned for the
current tag operation.

Numeric data field that specifies the signal-to-noise ratio measured as a
tag is responding. SNR is equivalent to RSSI minus RNSI. Values are
measured in dBm.

Defines an ASCII field.

Defines a hexadecimal field that represents the tag identification
information contained on the tag.

String representation of the type of tag being returned for the current
tag operation.

Specifies that the command should return the timestamp for the
READ or WRITE command.

Defines the conditions applied to reading and writing specific tags.

Basic Reader Interface Programmer’s Reference Manual 19

Chapter 3 — Understanding BRI Programming Elements

Keywords Reserved for Reader Attributes

The following table lists the reserved keywords for reader attributes.

20

Keywords Reserved for Reader Attributes

Keyword
ANTENNAS or ANTS

ANTTIMEOUT or
ANTTO

ANTTRIES

BAUD
BTPWROFF

CHKSUM

DENSEREADERMODE or
DRM

ECHO
EPCC1G2PARAMETERS
or EPCC1G2PARMS
FIELDSEP

FIELDSTRENGTH or FS
IDREPORT
IDTIMEOUT or IDTO
IDTRIES

INITIALQ

INITTRIES
LBTCHANNEL

LBTSCANENABLE
LOCKTRIES
NOTAGRPT

RDTRIES
RPTTIMEOUT or RPTTO

SCHEDULEOPT or
SCHEDOPT

Description

Sets the sequence of antennas to be used during READ and
WRITE commands.

Sets the timeout of a READ or WRITE on each antenna.

Sets the number of times a READ or WRITE is executed on
each antenna.

Sets the reader baud rate.

Sets the time period (in seconds) the Bluetooth radio (if
available) will search for a Bluetooth connection before turning
off to save power.

Sets the BRI to return checksums for each line of output.

Enables or disables the dense reader mode operation.

Sets the BRI to echo input commands back to the host.

Selects the EPCC1G2 configuration parameters. Tags from
some vendors will not work reliably until you select the proper
parameter set.

Sets the BRI to format the output data by placing this value
between fields.

Sets the RF power level of each antenna.
Specifies if the BRI automatically reports tag IDs.
Sets the ID timeout of the identify algorithm execution.

Sets the number of times the identify algorithm is to be
executed.

Sets the initial Q value for the EPCglobal Class 1 Gen 2 query
command.

Sets the number of initialization tries.

Determines the default transmit channel for ETSI 302-208
when executing the Listen Before Talk algorithm.

Enables ETSI 302-208 channel frequency scanning when
running the Listen Before Talk algorithm.

Sets the number of times that an attempt is made to find tags
before a response is returned to a LOCK command.

Specifies if the BRI automatically sends a message if no tags are
detected during a READ or WRITE command.

Sets the number of times the read algorithm is to be executed.

Sets the amount of time to delay event reports for READ
commands in Continuous mode.

Determines how antennas are switched during the inventory
process. For details, see “Understanding the Timeouts and
Tries” on page 86.

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

Keywords Reserved for Reader Attributes (continued)

Keyword Description

SELTRIES Sets the number of times GROUP SELECT commands are
issued to the tag field during a read or write.

SESSION Sets the EPCglobal Gen 2 session mode information.

TAGTYPE Sets the type of Intellitag tags or EPCglobal Gen 2 tags that will
be read and written.

TIMEOUTMODE Establishes the use of IDTIMEOUT and ANTTIMEOUT. For
details, see “Understanding the Timeouts and Tries” on
page 86.

TTY Sets the BRI to respond to <CR> or <LF> only, or to the
<CRLF> sequence.

UNSELTRIES Sets the number of times unselect commands are issued to the
tag field during a read or write.

XONXOFF Enables or disables the flow control for a serial connection.

WRTRIES Sets the number of times the write algorithm is to be executed.

Keywords Reserved for Reader Error and Success Responses

The following table lists the reserved keywords for reader error and success
responses. For more details, see “Understanding Error and Success Responses”
on page 96.

Keywords Reserved for Reader Error and Success Responses

Keyword Description

ADERR Response to a WRITE command for an EPCglobal Class 1 Gen 2
tag when you did not write an even-length value to an even-byte
addresses.

CKERR Response to a command with an invalid checksum.

ERASEERR Response to an erase tag field command that was not successful.

ERASEOK Response to an erase tag field command that was successful.

ERR Response to a command that was not successful.

MERR Response to any command that causes an “out of memory” error.

NOTAG Response to a READ or WRITE command when no tags are
found and when the NOTAGRPT attribute is enabled.

OK> Response terminator that is included at the end of every
command response.

PVERR Response when memory is locked.

PWERR Response when the WRITE command failed because the tag had
low power.

RDERR Response to a read tag field command that was not successful.

WRERR Response to a write tag field command that was not successful.

WROK Response to a write tag field command that was successful.

Basic Reader Interface Programmer’s Reference Manual 21

Chapter 3 — Understanding BRI Programming Elements

Constants

%

This section describes the string, hex, binary, integer, and octal constants:

* String constants are specified by surrounding the string text with double quotes
(7). String constants can include non-printable characters by using the \
notation; for example, \007.

* Hex constants are specified by placing an uppercase H or lowercase h in front of
the hexadecimal characters (0 to 9, A to F). Hex constants must be specified in
pairs. For example, HOF.

* Binary constants are specified by placing an upper case B or lowercase b in front
of the binary characters (0 to 1).

 Integer constants are specified using the characters 0-9. Integer values can range
from 0 to 4,294,967,295.

* Octal constants are specified using the characters 0 to 7. Octal values can be
specified by using the \Oxxx notation or the Oxxx notation.

Note: Any numeric constant that contains a leading 0 (zero) will be interpreted as
an octal constant.

Data Field Definitions

ANTENNA

AFI

22

BRI commands use parameters to define the location and type of data memory
stored or retrieved from the tag. These parameters are referred to as data type
definitions. The BRI has reserved, predefined data type definitions associated with
the tag.

You can also use the shortcut name ANT.

ANTENNA is positive integer data type associated with the tag and indicates which
antenna primarily located the tag. ANTENNA is a read-only value reported during
the execution of READ and WRITE commands. Additionally, this data field cannot
be used in a WHERE clause.

ANTENNA is a reserved keyword which, when specified in a READ or WRITE
command, returns the antenna number used during the read or write. This value is
returned as a decimal integer value ranging from 1 to 4. The antenna number can
range from 1 to 4 depending upon the reader and the number of connected
antennas.

AFl is a keyword used to point at the bits within the Gen 2 PC bits that are used to
carry the Application Family Identifier. When writing the AFI the tag’s EPC/ISO bit
is set to one. For example:

WRITE AFI=Hxx

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

Once the AFI has written to a tag, the tag takes on the ISO-6C definitions. The
EPCID keyword will return the 96 bit value, however, once the AFI is written, the
EPCID keyword can no longer be used in the WHERE clause for EPCID matching.
You must used the ISOUII keyword.

BIT(memory_bank:startbit, bits)

COUNT

EPCID

Data types declared as BIT can range in length from zero to the number of bits given
by the bit parameter. All BIT data types are represented as the binary characters [0-1].

The BIT data type is currently restricted for use in WHERE clauses only. This means
that the BIT data type can not be used to refer to data that are either read or written
from /to tags.

The memory_bank parameter is optional and only applies to EPCglobal Class 1 Gen
2 tags. For a list of valid values for memory_bank, see the Valid Memory Bank Values
table in the data field definition: “HEX(memory_bank:address, length)” on
page 24.

The startbit parameter can range from zero to the maximum address for the defined
field. For EPCglobal Class 1 Gen 2 tags and other tag types, if an address is larger
than the space available on the tag, an error is returned for out of range addresses.

The bits parameter can range from zero to the number of bits in memory minus the
startbit value. If the length parameter is omitted, one is assumed and is required.

Bit addressing is defined as the least significant bit if the byte with the lowest
address in a bank has a bit address of zero. The most significant bit of the same byte
has a bit address of seven. The least significant bit of the next byte has the bit
address of eight, and so forth.

The COUNT keyword is a positive integer data field associated with a tag and
indicates the number of times a tag was seen in the current inventory round.
Additionally, this data field cannot be used in a WHERE clause.

For both EPCglobal Class 1 Gen 2 and ISO 18000-6C tags, EPCID is a special
keyword that equates to HEX (1:4, L) which is the EPC memory bank. Here L is
variable length that depends on the data read or written to the tag.

EPCID corresponds to the electronic product code (EPC) which is the tag’s unique
identifier that is automatically returned when the tags in the field of view or the
reader are inventoried. The EPCID refers to the 12 byte or greater data starting in
location 4 of memory bank 1 of a tag. The first 4 bytes should not be written to by a
user.

EPCID can also apply to UCODE119 tags from Phillips. The 12-byte EPCID is
coded as described in the Phillips document, Implementation of EPC Tag Data on U-
Code EPC 1.19 Version 1.0 June 2004.

Basic Reader Interface Programmer’s Reference Manual 23

Chapter 3 — Understanding BRI Programming Elements

The following rules apply to EPCID:
* WRITE EPCID=HXXXXX isa shortcut for writing an EPC to a tag.

* EPCglobal Class 1 Gen 2 defines memory in 16-bit words on even byte
addresses.

* The hex value must be one or more bytes. A typical EPCID is 12 bytes or 96
bits, but can be more or less than 12 bytes.

* The header field is automatically calculated when using the EPCID keyword.
The AFI flag and the 8 AFI bits are set to zero indicating that the tag format is
now EPC.

* For READ EPCID, the value returned is at least one byte.

You can write data to the EPCglobal Class 1 Gen 2 tags EPC memory bank using:
HEX(1:B, L)

where:

B is the byte offset into the memory bank. B must be even.

L isthelength. L must be greater than 1 and less than 67.

The EPCglobal Class 1 Gen 2 standard permits up to 66 bytes (CRC-16, PC-16, 31-
EPC data words) in this bank but the tag manufacturer may supply less than 31 EPC
data words. An attempt to write data beyond what exists in the tag results in a write
error.

You should be careful writing bytes 0-3 on a tag. Bytes 0-1 correspond to the CRC-
16. The tag recalculates the CRC-16 value each time the tag is powered on. Bytes 2-3
correspond to the protocol control (PC) word which includes the data length field,
the EPC/ISO bit, and the header bits. You must be careful to encode the PC
correctly. The data length field is the word count of the PC plus the EPC data words.
An incorrect value written to locations 2 and 3 could render the tag unreadable until
proper values are written to location 2 and 3.

HEX(memory_bank:address, length)

24

Data types declared as HEX can range in length from zero to the maximum tag
address in length as specified by the length parameter. All HEX data types are
represented as the hexadecimal characters (0 to 9, A to F).

Note: Locations 0 through 3 should not be written and the starting address for the
command should be 4 or greater.

A unique feature of the HEX data type when used in a WHERE clause is the ability
to use wildcard character pairs of ?? to represent a “don’t care” condition. For
details, see “READ” on page 50 and “WRITE” on page 64.

Note: The wildcard notation cannot be used when the tagtype is set to EPCglobal
Class1 Gen 2 tags.

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

The memory_bank parameter is optional and only applies to EPCglobal Class 1 Gen
2 tags. Tag memory is divided into four sections (0 to 3) and the memory_bank
parameter indicates the section. The following table lists the valid values for
memory_bank. If you omit the memory_bank parameter, the EPC memory bank is
assumed for EPCglobal Class 1 Gen 2 tags.

Valid Memory Bank Values

Value Memory Bank Name for the Section of Tag Memory Default
0 Reserved (passwords)

1 EPC (electronic product code) X

2 TID

3 User Memory

The address parameter can range from zero to the maximum tag address. If an
address is larger than the space available on the tag, the response depends on the tag

type:
* For ISO 18000-6B tags, the address wraps to the beginning of the tag memory.

* For EPCglobal Class 1 Gen 2 tags and other tag types, an error is returned for
out-of-range addresses.

The length parameter can range from zero to the length of the data space on the tag
minus the address. The length parameter is required.

INT(memory_bank:address, length)

Data types declared as INT can range from one to four bytes in length as specified by
the length parameter. All INT data types can be represented as decimal values. The
range of each INT data type is shown below:

* 1byte: 0to 255

* 2byte: 0to 65,535

* 3byte:0to 16,777,215

* 4byte: 0to 4,294,967,295

Data written to the tag is stored in big endian format. The most significant byte of
the data is stored at the first address location specified in the data type.

The memory_bank parameter is optional and only applies to EPCglobal Class 1 Gen
2 tags. For a list of valid values for memory_bank, see the Valid Memory Bank Values
table in the data field definition: “HEX(memory_bank:address, length)” on
page 24. If you do not specify a memory bank, the EPC memory bank is assumed for
EPCglobal Class 1 Gen 2 tags.

The address parameter can range from zero to the maximum address for the defined
field. If an address is larger than the space available on the tag, the response depends
on the tag type:

* ForISO 18000-6B tags, the address wraps to the beginning of the tag memory.

Basic Reader Interface Programmer’s Reference Manual 25

Chapter 3 — Understanding BRI Programming Elements

ISOUII

26

%

* For EPCglobal Class 1 Gen 2 tags and other tag types, an error is returned for
out-of-range addresses.

The length parameter can range from one to the length of the data space minus the
address. The length parameter is required.

Note: Currently, this feature is not fully functional in this version on the BRI and
this feature is only capable of returning the EPCglobal defined EPCID information.
The length of the EPCID data can vary from 1 to 32 bytes depending on the value
programmed in the PC of memory bank 1 on the tag.

You can also use the shortcut name UIL

For ISO 18000-6C tags, ISOUII is a special keyword that equates to
HEX (1:4, L) which is the UIl memory bank. Here L is variable length that
dependent on the data that is read or written to the tag.

ISOUII corresponds to the ISO Unique Item Identifier that is automatically
returned when the tags in the field of view are inventoried. The data bytes
correspond to the UII portion of the UIl memory bank.

The following rules apply to ISOUII:
* WRITE ISOUII=HXXXXX isashortcutfor writingan UII to a tag.

* There must be an even number of bytes in the hex value. ISO 18000-6C
defines memory in 16-bit words on even byte addresses.

* The hex value must be at least 2 bytes long (the header field plus 1 UII word).

* The hex value must be less than 62 bytes long (the header field plus 31 UII
words).

* The header field implies an UII length. The data length written to the tag is
implied by the length of the hex value supplied.

* The EPC/ISO bit in the tag’s protocol control word is set to one. Once the
ISOUII is written then the ISOUII can be used in a WHERE clause to match
the ISOUII information and the EPCID can no longer be used to match.

* For READ ISOUII, the length UII data is determined by the tag’s length field
found in the PC word. Ut is this length minus one times two ((L-1) * 2) bytes.

You can write data to the UIIl memory bank using:

HEX (1:B, L)

where:

B is the byte offset into the memory bank. B must be even.
L isthelength. L must be greater than 1 and less than 67.

The ISO 18000-6C standard permits up to 66 bytes (CRC-16, PC-16, 31-UII data
words) in this bank but the tag manufacturer may supply less than 31 UII data
words. An attempt to write data beyond what exists in the tag will result in a write
error.

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

You should be careful writing bytes 0 to 3 on a tag. Bytes 0 and 1 correspond to the
CRC-16. The tag recalculates the CRC-16 value each time the tag is powered on.
Bytes 2 and 3 correspond to the protocol (PC) control word which includes the data
length field, the EPC/ISO bit, and the header bits. You must be careful to encode the
PC correctly. The data length field is the word count of the PC plus the UII data
words.

Note: Locations 0 through 3 should not be written and the starting address for the
& command should be 4 or greater.

RSSI

The RSSI keyword is a negative integer data field associated with the received signal
strength of the tag being returned for the current tag operation. The minimum
value for RSSI is -128 dBm, and the maximum value is 0 dBm.

STRING(memory_bank:address, length)

You can also use the shortcut name STR.

Data types declared as STRING can range in length from zero to the length of the
data space as specified by the length parameter.

All STRING data types are represented as the printable ASCII character set. If a value
is not in the ASCII printable range (32 to 127), the data is displayed in a format that
is dependent on the host device. If a string data type is defined, it should contain
only printable ASCII characters.

The memory_bank parameter is optional and only applies to EPCglobal Class 1 Gen
2 tags. For a list of valid values for memory_bank, see the Valid Memory Bank Values
table in the data field definition: “HEX(memory_bank:address, length)” on
page 24.

The address parameter can range from 0 to the length of the data space. If an address
is larger than the space available on the tag, the response depends on the tag type:
* For ISO 18000-6B tags, the address wraps to the beginning of the tag memory.

* For EPCglobal Class 1 Gen 2 tags and other tag types, an error is returned for
out-of-range addresses.

The length parameter can range from zero to the length of the data space minus the
address. The length parameter is required.

When a STRING data type is written to a tag, only the requested characters are
written. The NULL character is not stored in tag memory at the end of a STRING
data type. For example:

STRING (10, 5)="HELLO”

The data stored in tag memory starting at address 10 is H, E, L, L, O for a total of five
characters.

When STRING data types are specified in READ commands, the data returned is
equal to length specified in the READ command. Unprintable characters are
returned in a HEX format \xYY where YY is the data representing the hex value.

Basic Reader Interface Programmer’s Reference Manual 27

Chapter 3 — Understanding BRI Programming Elements

TAGTYPE

TIME

When writing string fields, you can enter binary values using the \ xxx notation.
However, do not try to use this method to enter a NULL character into a string field.
BRI returns ERR if you enter \ 000 into a string field.

TAGTYPE is a string representation of the type of tag being returned for the current
tag operation. Possible values for TAGTYPE consist of all of the supported
TAGTYPE attribute values. This data field cannot be used in a WHERE clause. For
more information, see “TAGTYPE” on page 84.

TIME is a positive integer data type associated with the tag and indicates the time
when the tag was primarily located. Time is a read-only data field, and cannot be
used in a WHERE clause.

TIME is a reserved keyword which, when specified in a READ or WRITE command,
returns a time value indicating when the READ command was completed. The time
value is returned as an integer value with 1 millisecond (ms) resolution.

The time base value returned is reset to zero when a reader is first powered up.
Readers do not provide real time clock capabilities, so time is relative to the reader
powering up or being reset. The range of the TIME parameter is returned as the
number of milliseconds since power-up of the reader and ranges from 0 to
4294967295 ms. This represents approximately 49.7 days before the time rolls over
if the reader is on continuously and the BRI session is maintained.

The TIME information is returned as an integer in the following format:

1234
The value 1234 represents a time of 1.234 seconds.

Data Conditions

28

Data conditions are used to select tags that have data matching a defined constant
value. The data conditions can be as simple or complex as necessary to uniquely
identify a specific group of tags to operate on.

There are two limitations:

* The comparison must be made between data that is stored in a tagand a
constant value. You cannot make a comparison between two memory locations
contained on a tag. The BRI returns ERR<CRLF> if you compare two memory
locations on a tag.

* The type of tags you read and write to controls the operators you can use in data
conditions:

» ISO 18000-6B tags support all operators (=, ! =, >, <).
» EPCglobal Class 1 Gen 2 tags support only the = and ! = operators.

You can use two formats for data conditions:

Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

* The first uses the native tag selector logic or NOT logic. Using this format, you
can use all data condition operators (=, ! =, >, <). For help, see the next section,
“Using Native Tag Selector Logic in Data Conditions.”

* The second uses AND/OR logic. Using this format, you can use only the = and
! = data condition operators. For help, see “Using AND/OR Logic in Data
Conditions” on page 30.

Using Native Tag Selector Logic in Data Conditions

WHERE [<Data Field> <Operator> <Constant>], [NOT <Data Dield>
<Operator> <Constants>]

where:

<Data Field> is one of the data types described in “Data Field Definitions” on
page 22.

<Operator> is one of the operators described in the following table, “Operators
for Native Tag Selector Logic Data Conditions.”

<Constant> is one of the constants described in “Constants” on page 22.

Operators for Native Tag Selector Logic Data Conditions

Operator Description

= The value at the specified tag memory address is equal to the comparison
value.

l= The value at the specified tag memory address is not equal to the comparison
value.

> The value at the specified tag memory address is greater than the comparison
value. This operator is not supported for EPCglobal Class 1 Gen 2 tags.

< The value at the specified tag memory address is less than the comparison
value. This operator is not supported for EPCglobal Class 1 Gen 2 tags.

Multiple data conditions must be separated by a comma or a space.
A simple example of a data condition is:
INT(0,1)=1

In this example, INT (0, 1) specifies that an integer of one byte length starting at
address 0 of the tag memory will be compared with integer value of one as specified
by =1.

You can use the keyword NOT in the data condition when you use native tag
selector logic. If a data condition contains NOT, the matching tags are not selected.

All data conditions are processed from left to right.

The following example applies only to ISO 18000-6B tags because it contains the >
operator. Suppose you want to implement the following expression where data is the
integer values at address 18:

100 < data < 200
You can specify this condition using this selector logic:

WHERE INT(18,1) > 100, NOT INT(18,1) > 199

Basic Reader Interface Programmer’s Reference Manual 29

Chapter 3 — Understanding BRI Programming Elements

The first condition selects all ISO 18000-6B tags whose data at address 18 is greater
than 100. The second condition then unselects all tags whose data at address 18 is
greater than 199. This data condition sequence implements the specified expression.

Using AND/OR Logic in Data Conditions

WHERE [<Data Field> <Operator> <Constants>] AND [<Data Field>
<Operator> <Constant>] OR...

where:

<Data Field> is one of the data types described in “Data Field Definitions” on
page 22.

<Operator> is one of the operators described in the following table, “Operators
for AND/OR Logic Data Conditions.”

<Constants> is one of the constants described in “Constants” on page 22.

It should be noted that WHERE clauses are only allowed when the TAGTYPE
attribute is set to a single tag type. WHERE clauses are not allowed in operations
involving multiple air protocols. Wildcards may also not be used if TAGTYPE has
more than a single value.

The data in the WHERE clause conditions depends on the TAGTYPE used.

Data Fields Supported by Different Tag Types

Tag Type Data Field

G1/ISO6BG1 HEX, INT, STRING
G2/ISO6BG2 HEX, INT, STRING
ICODE119 HEX, INT, STRING
UCODE119 HEX, INT, STRING

or V119

EPCC1G2 BIT, HEX, INT, STRING

Operators for AND/OR Logic Data Conditions

Operator Description

= The value at the specified tag memory address is equal to the
comparison value.

1= The value at the specified tag memory address is not equal to the
comparison value.

> The value at the specified tag memory address is greater than the
comparison value. This is not supported for EPCglobal Gen 2 tags.

< The value at the specified tag memory address is less than the
comparison value. This is not supported for EPCglobal Gen 2 tags.

A simple example of a data condition is:

INT(O0,1)=1

30 Basic Reader Interface Programmer’s Reference Manual

Chapter 3 — Understanding BRI Programming Elements

In this example, INT (0, 1) specifies that an integer of one byte length starting at
address 0 of the tag memory will be compared with integer value of one as specified

by =1.

Because the following expression attempts to compare two tag memory locations,
the BRI returns ERR<CRLF> if you use this expression in a command:

INT(0,1)=INT(1,1)

Using the AND and OR Keywords

Two additional keywords are available for specifying data conditions:

* AND-If two or more data conditions are joined with AND, the tag data must
match the conditions specified in both data conditions parameters.

* OR-—Iftwo or more data conditions are joined with OR, the tag data must match
either of the conditions specified in the data conditions parameters.

A WHERE clause is processed from left to right. An OR condition selects a group of
tags to be included in an expression. An AND keyword unselects or excludes tags
from an expression.

The following examples demonstrate this concept.

READ INT(18) WHERE INT(19)=1 OR INT(20)=2 AND INT(21)=3
The WHERE expression is evaluated from left to right as follows:

* Include all tags if the data at address 19 equals 1.
* Include all tags if the data at address 20 equals 2.
* Exclude all tags if the data at address 21 does not equal 3.

Therefore, tags are selected only if there is a 3 at location 21 and eithera 1 ora 2 at
locations 19 and 20 respectively.

It is important to note that the AND/OR keywords apply to the condition that
follows. The first term in a WHERE expression always has an implied OR and
includes tags that contain the specified data.

You can write the previous example differently and still achieve the same result, as
shown in the following example.

READ INT(18) WHERE INT (20)=2 AND INT(21)=3 OR INT(19)=1
The WHERE expression is evaluated from left to right as follows:

* Include all tags if the data at address 20 equals 2.
* Exclude all tags if the data at address 21 does not equal 3.
* Include all tags if the data at address 19 equals 1.

Therefore, tags are selected only if there is a 3 at location 21 and eithera 1 ora 2 at
locations 19 and 20 respectively.

Basic Reader Interface Programmer’s Reference Manual 31

Chapter 3 — Understanding BRI Programming Elements

Grouping Expressions Without Using Parentheses

You cannot use parentheses to group expressions using AND/OR logic. Therefore, it
may be difficult to implement an expression using the AND/OR logic without a
great deal of planning. To allow some primitive grouping in defining WHERE
expressions, the AND/OR expression logic has been modified. Every time an AND
expression is followed by an OR, the expression following the OR starts a new tag
selection criteria. The following example illustrates this concept, but also adds a
variation in expression evaluation. Using the previous example, the next two
examples evaluate differently, strictly due to the order of the data in the expression.

In the following example, the WHERE expression evaluates exactly as described
above.

READ INT(18) WHERE INT(19)=1 OR INT(20)=1 AND INT(21)=3

However, the following example changes the order of the expression, so the resulting
tags selected are evaluated as if parentheses were being used:

READ INT(18) WHERE INT(20)=1 AND INT(21)=3 OR INT(19)=1

Because an OR follows an AND, the expression is evaluated as follows using
parentheses:

READ INT(18) WHERE (INT(20)=1 AND INT(21)) OR INT(19)=1
Implied parentheses are applied any time an OR keyword follows an AND keyword.

Suppose you must find a tag that contains the following information: four-byte
STRING data at location 18 with data NAME, two-byte INT data at location 22 with
data 17, and one-byte INT data at location 24 with data E. The expression that
describes this tag is shown below:

STRING (18,4)="NAME” AND INT(22,1)=17 AND INT(24,1)='E’

Multi-Protocol Condition Usage

READ and WRITE commands can be applied to multiple tag types. The BRI
attribute TAGTYPE specify global values that apply to READ and WRITE operation
by default. These global values can be overridden locally by specifying TAGTYPE.

In the following example, the TAGTYPE stipulates that only ISO180006B tags will
be read:

READ TAGID TAGTYPE=ISO6BG1l

However, in the following example, the TAGTYPE stipulates that both ISO180006B
and EPCC1G2 tags will be read:

READ TAGID TAGTYPE=ISO6BG2, EPCC1lG2 TAGID

Note: The order of the tag types specified also determine the order in which the tags
§ will be identified.

32 Basic Reader Interface Programmer’s Reference Manual

BRI Commands

This chapter describes the BRI commands and related topics. This chapter
contains these sections:

* BRI Commands

* BRI Extensions for NXP Tags

* BRI Extensions for Fujitsu Tags

* BRI Extensions for Impinj Monza 4 Tags

* Understanding [READ FIELD] and [WRITE FIELD] Parameters
* Understanding the <ATTRIBUTE NAME> Parameter

* Understanding the Timeouts and Tries

* Understanding the [LITERAL] Parameter

* Reading and Writing STRING Fields

* Understanding ACCESS and KILL Passwords

* Understanding Error and Success Responses

* Understanding EVENT Messages

* Understanding the Format of BRI Command Responses

* Creating and Using BRI Macros

Chapter 4 — BRI Commands

BRI Commands

ATTRIBUTE

34

Purpose:

Command Shortcut:

For BRI Applications
Using TCP:

Syntax:

Parameters:

Examples:

The BRI commands and responses are defined in this section. These examples
follow these formatting conventions:

* Values in brackets [| are optional parameters.

* Values in angle brackets < > are required parameters.

Note: Not all BRI commands are supported by all Intermec RFID readers, and
specific ranges for commands and attributes may differ from product to product
depending on hardware options. For help, see “Reader-Specific Platform
Specifications” on page 104,” and the documentation for your Intermec RFID
reader.

For BRI extensions and commands that are specific to:

* NXP tags, see “BRI Extensions for NXP Tags” on page 69.

* Fujitsu tags, see “BRI Extensions for Fujitsu Tags” on page 70.

* Impinj Monza 4 tags, see “BRI Extensions for Impinj Monza 4 Tags” on
page 73.

The ATTRIBUTE command changes or reads the reader attributes.
ATTRIB

Changing the Reader Attributes

If your BRI application communicates with the reader over a TCP connection, you
cannot use the ATTRIBUTE command to modify the BAUD, CHKSUM, ECHO,
FIELDSEP, or TTY attributes from their default settings. For details, see “BRI TCP
Applications” on page 3.

ATTRIBUTE [<ATTRIBUTE NAME>=[<VALUE>]]*

<ATTRIBUTE NAME> = This parameter specifies the attribute to change in the
reader. For a complete description of the reader attributes, see “Understanding the
<ATTRIBUTE NAME> Parameter” on page 75.

<VALUE> = This parameter specifies the new value for the attribute:
* For “tries” attributes (such as RDTRIES), the value corresponds to a count.

* For “timeout” attributes (such as IDTIMEOUT), the value corresponds to a time
period (units of milliseconds).

These examples demonstrate how to use the ATTRIBUTE command to change
reader attributes.

Example 1:
This example returns the current settings for all attributes:

ATTRIBUTE<CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Example 2:

This example specifies that the reader should attempt a read operation on each
[READ FIELD] up to three times:

ATTRIBUTE RDTRIES=3

For details about the [READ FIELD], see “Understanding [READ FIELD] and
[WRITE FIELD] Parameters” on page 74.

Example 3:

This example specifies that timeouts will not be used when trying to read or write
tags. Instead, IDTRIES and ANTTRIES will be used to specify a maximum number
of attempts:

ATTRIBUTE TIMEOUTMODE=OFF
Example 4:

This example specifies that timeouts IDTIMEOUT and ANTTIMEOUT will be used
when trying to read or write tags:

ATTRIBUTE TIMEOUTMODE=ON

Example 5:

This example specifies that the reader should use three identify cycles attempting to
identify tags:

ATTRIBUTE IDTRIES=3

Example 6:

This example specifies that the reader should execute the identify operation for
three seconds:

ATTRIBUTE IDTIMEOUT=3000

Example 7:

This example sets the reader attribute INITTRIES to a value of two:
ATTRIBUTE INITTRIES=2

Here is an example response when this ATTRIBUTE command is successful:
OK><CRLF>

Here is an example response when this ATTRIBUTE command fails:
ERR<CRLF>

Example 8:

This example sets the parameters WRTRIES to three, IDTRIES to two, and
RDTRIES to three:

ATTRIBUTE WRTRIES=3, IDTRIES=2, RDTRIES=3

If there is an error on the command line or the parameter specified is not defined,
the BRI returns ERR<CRLF>.

Basic Reader Interface Programmer’s Reference Manual 35

Chapter 4 — BRI Commands

Syntax:

Parameters:

Examples:

Reading the Reader Attributes

ATTRIBUTE <ATTRIBUTE NAME>

<ATTRIBUTE NAME> = This parameter specifies the attribute to read. For a
complete description of the reader attributes, see “Understanding the
<ATTRIBUTE NAME> Parameter” on page 75.

If you do not include an <ATTRIBUTE NAME> in the command, the BRI returns
the current settings of all the reader attributes.

These examples demonstrate how to use the ATTRIBUTE command to read the
reader attributes.

Example 1:

This example returns the current settings for all attributes:
ATTRIBUTE<CRLF>

Example 2:

This example requests the value for the RDTRIES attribute:

ATTRIBUTE RDTRIES

The BRI returns the value of the parameter followed by a <CRLF> sequence. The BRI
returns OK><CRLF> for successfully reading the parameter. Here is an example
response to this command:

RDTRIES=3<CRLF>

OK><CRLF>

Example 3:

This example requests the values for the IDTRIES and WRTRIES attributes:
ATTRIBUTE IDTRIES, WRTRIES

The BRI returns the value of the parameter followed by a <CRLF>. If an attribute
name is specified that is not defined, the BRI returns ERR<CRLF>.

Here are example responses to this command:

e IDTRIES=2<CRLF>

WRTRIES=3<CRLF>
OK><CRLF>
e ATTRIBUTE IDTRIES<CRLF>

IDTRIES=4<CRLF>
OK><CRLF>
e ATTRIBUTE IDTRY<CRLF>

ERR<CRLF>
OK><CRLF>

BLOCKPERMALOCK

Purpose:

36

Allows the reader to permanently lock blocks of user memory. The size and number
of memory blocks are dependent on the tag implementation. A variation of the
command allows the reader to read the permalock status.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Syntax: BLOCKPERMALOCK LOCK [data_field]|*[TAGTYPE=tagtype list] [WHERE <data
condition>] [PASSWORD=<access_password>]

Parameters: <data_field> = Specifies a bank, offset, length, and mask in which the Permalock
field is to operate. For example:

HEX(<bank>:<offset>,<length>)=H<Data>
<bank> = The bank should always be 3.

<offset> = <offset> is the BlockPtr parameter of the EPCGlobal Gen2 specification.
It specifies the starting address for the Mask field in units of 16 blocks. For example:

For example, <Offset> 0 indicates block 0, <Offset> 1 indicates block 16.

<length> = <Length> is the BlockRange parameter of the specification. It specifies
the range of the Mask field starting at <Offset> and ending (16* <Length>)-1 blocks
later.

<data> = Contains a bit mask indicating which blocks in the range should be locked.
One bits indicate that a block should be locked. Zero bits indicate that a block is left
alone. The most significant bit of <Data> corresponds to the lowest address block.
<data> must be specified as a hexadecimal string and it must contain 16 bits for
each unit of <length>. For example, when <length> is 1, <data> must consist of 2
hex pairs.

Examples: These examples demonstrate how to use the BLOCKPERMALOCK command.
Example 1:
BLOCKPERMALOCK LOCK HEX(3:0,1)=H0800
HO0123456789ABCDEF01234567 LCKOK
Lock the 5th block of user memory.
Example 2:
BLOCKPERMALOCK LOCK HEX(3:2,1)=H0001
HO0123456789ABCDEF01234567 LCKOK
Lock the 48th block of user memory.
Example 3:
BLOCKPERMALOCK LOCK HEX(3:0,1)=H0800 HEX(3:2,1)=H0001
HO0123456789ABCDEF01234567 LCKOK
Lock the 5th and 48th blocks of user memory.
Example 4:
BLOCKPERMALOCK LOCK HEX(3:0,3)=H080000000001
HO0123456789ABCDEF01234567 LCKOK
Lock the 5th and 48th blocks of user memory.

Basic Reader Interface Programmer’s Reference Manual 37

Chapter 4 — BRI Commands

BLOCKPERMALOCK READ

BRIVER

38

Purpose:

Syntax:

Examples:

Purpose:

Syntax:

Examples:

The BLOCKPERMALOCK READ command allows you to read the lock status.

BLOCKPERMALOCK READ [data_field]*[TAGTYPE=<tagtype list>] [WHERE
<data condition>] [PASSWORD=<“access_password”>|

data_field = Specifies a bank, offset, and length in this form:
HEX(<bank>:<offset>,<length>).

<bank> = The bank should always be three.

<offset> = The offset is the “BlockRange” parameter of the specification. It specifies
the range of blocks for the which the status should be returned. The range starts at
<offset> and ends (16*<length>)-1 blocks later.

The result of a "BLOCKPERMALOCK READ" command is a hexadecimal value
that represents a bit map of locked and unlocked blocks. A one bit indicates that the
corresponding block is locked. A zero bit indicates that the block is unlocked. The
most significant bit of the resulting hexadecimal value corresponds to the lowest

address block.

Example 1:

BLOCKPERMALOCK READ HEX(3:0,1)
HHO0123456789ABCDEF01234567 H0800

Read the permalock status of the first 16 blocks of user memory.
Example 2:

BLOCKPERMALOCK READ HEX(3:3,1)
HHO0123456789ABCDEF01234567 H0001

Read the permalock status of the third 16 blocks of user memory.
Example 3:

BLOCKPERMALOCK READ HEX(3:2,2)
HHO0123456789ABCDEF01234567 H00000001

Read the permalock status of the second and third 16 blocks of user memory.
Example 4:

BLOCKPERMALOCK READ HEX(3:2,1) HEX(3:3,1)
HHO0123456789ABCDEF01234567 H0000 HO001

Read the permalock status of the second and third 16 blocks of user memory.

The BRIVER command returns the BRI specification version or feature level
supported by the reader or module.

BRIVER
BRIVER<CRLF>
3.14<CRLF>
OK>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

CAPABILITIES

Purpose: This command is available for an application that was to programmatically
determine the capabilities of an RFID reader. The following syntax defines the
CAPABILITIES command.

Shortcut: CAP

Syntax: CAPABILITIES [GPICOUNT] [GPOCOUNT] [GPITYPE<index>]
[GPOTYPE<index>] [ANTENNAS] [TAGTYPE] [TRIGGERCOUNT]
[FIELDSTRENGTH<MIN | MAX>[index]] [DENSEREADERMODE]
[LISTENBEFORETALK [CHANNEL <MIN | MAX>] [SESSIONS]
[EPCC1G2PARAMETERS] [SCAN] [NXP]

Parameters: Unlike other commands, the CAPABILITIES command has sub-commands which
allow you to determine the specifications of your reader.

[GPICOUNT] = This sub-command returns the number of general purpose inputs
available on your device. For example:

CAP GPICOUNT<CRLF>

4<CRLF>

OK>

[GPOCOUNT] = This sub-command will return the number of general purpose
outputs available on your device. For example:

CAP GPOCOUNT<CRLF>

4<CRLF>

OK>

[GPITYPE] = This sub-command will return the type of input (digital or analog) for
the input specified. If no specific input is requested, the type for each input will be
returned. This command will return either DIGITAL or ANALOG. For example
(assuming that there are 4 inputs):

CAP GPITYPE<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

OK>

[GPOTYPE] = This sub-command will return the type of output (digital or analog)
for the output specified. If a specific output pin is requested, the type will be
returned for each output pin. This command will return either DIGITAL or
ANALOG. For example (assuming there are 4 outputs):

CAP GPOTYPE<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

DIGITAL<CRLF>

OK>

Basic Reader Interface Programmer’s Reference Manual 39

Chapter 4 — BRI Commands

40

[ANTENNAS]| = This sub-command will return the number of antennas that are
available on the device. For example:

CAP ANTENNAS<CRLF>

4<CRLF>

OK><CRLF>

CAP ANTENNAS<CRLF>

MONOSTATIC<CRLF >

OK><CRLF>

CAP ANENNAS 2<CRLF>

BISTATIC<CRLF>

OK><CRLF>

[TAGTYPE] = This sub-command will return the names of all supported tagtype
values accepted by the TAGTYPE attribute. For example:

CAP TAGTYPE<CRLF>

MIXED<CRLF>

G1l<CRLF>

G2<CRLF>

ISO5BG1<CRLF>

ISO6BG2<CRLF >

V119<CRLF>

UCODE119<CRLF>

ICODE119<CRLF>

EPCC1G2<CRLF>

OK<CRLF>

[FIELDSTRENGTH] = This sub-command will return either the minimum or
maximum value supported for the specified antenna index. If no antenna is
specified, the requested value will be returned for all antennas. The values returned
are in dB. For example:

CAP FIELDSTRENGTH MAX 1<CRLF>

30DB<CRLF>

OK><CRLF>

CAP FIELDSTRENGTH MIN<CRLF>

15DB<CRLF>

15DB<CRLF>

15DB<CRLF>

15DB<CRLF>

OK><CRLF>

[DENSEREADERMODE] = This sub-command will return whether or not the
reader supports dense reader mode. The response will either be TRUE or FALSE. For
example:

CAP DENSEREADERMODE<CRLF>

TRUE<CRLF>

OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

[LISTENBEFORETALK] = This sub-command is used to determine the LBT
capabilities of the reader. When called with no parameters, the reader will indicate
whether or not LBT is supported by responding with either TRUE or FALSE.

If LBT is supported, the additional options of this sub-command will also be
supported.

If LBT is not supported, all additional parameters for the LISTENBEFORETALK
sub-command will return ERR.

An example of the LISTENBEFORETALK sub-command is shown below:

CAP LISTENBEFORETALK<CRLF>
TRUE<CRLF>

OK><CRLF>

CAP CHANNEL MAX<CRLF>

13<CRLF>

OK><CRLF>

CAP LISTENBEFORETALK SCAN<CRLF>
TRUE<CRLF>

OK><CRLF>

[SESSIONS] = This sub-command will return the maximum number of sessions
that are supported on the current BRI connection transport (TCP or serial). Serial
connections will only support one session, because it is a point-to-point transport.
An example of the SESSIONS sub-command for TCP and Serial connections is
shown below:

Example (TCP)

CAP SESSIONS<CRLF>

8<CRLF>

OK><CRLF>

Example (Serial)

CAP SESSIONS<CRLF>

1<CRLF>

OK.<CRLF>

[EPCC1G2PARAMETERS] = This sub-command will return a list of the supported
EPCC1G2 parameter sets. An alias for this command is EPCC1G2PARMS. For
example:

CAP EPCC1G2PARMS<CRLF>

IDS=4,6,9,10<CRLF>

Each ID represents a value that can be assigned to the EPCC1G2PARAMETERS
attribute to select a particular set of EPCC1G2 parameters.

Basic Reader Interface Programmer’s Reference Manual 41

Chapter 4 — BRI Commands

DIAGNOSTICS

42

Purpose

Shortcut
Syntax

Parameters

You can include the ID parameter in the capabilities command and it will display
the EPCC1G2 parameters for the selected parameter set. For example:

CAP EPCC1G2PARMS 10<CRLF>

BLF=320KHz

MILLER=4<CRLF>

TAI=17<CRLF>

OK><CRLF>

[NXP] = This sub-command returns the NXP command extensions supported by
the BRI interface. If a reader does not support the NXP extensions, no commands
will be returned.

The DIAGNOSTICS command is available for an application that wants to
determine certain runtime characteristics of an RFID reader.

DIAG

DIAGNOSTICS [LASTREADCOUNT] [SESSIONS]

[LASTREADCOUNT] = This sub-command will return the number of tag
singulations that occurred during the last tag operation. If a tag operation is in
progress (such as a continuous read), the number of tags singulated at the time
DIAG LASTREADCOUNT is executed will be returned. For example:
READ<CRLF>

H300833B2DDD9014035050604<CRLF>
H300833B2DDD9014035050605<CRLF>
H300833B2DDD9014035050607<CRLF>
H300833B2DDD9014035050606<CRLF>

OK><CRLF>

DIAG LASTREADCOUNT

4

OK><CRLF>

[SESSIONS] = This sub-command will return the number of sessions that are
currently in use on a particular transport. For information about determining the
number of supported sessions, see the SESSIONS parameter in “CAPABILITIES”
on page 39. Serial connections will only support one session, because it is a point-
to-point transport.

An example of the SESSIONS sub-command for TCP and Serial connections is
shown below:

Example (TCP)

DIAG SESSIONS<CRLF>
3<CRLF>

OK><CRLF>

Example (Serial)

DIAG SESSIONS<CRLF>
1<CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

OK.<CRLF>

ERASE

Purpose: The ERASE command allows you to perform a block erase of EPC Gen 2 tags. The
ERASE command must operate on even data lengths.

Syntax: ERASE [DATA FIELD] [READ FIELD] [TAGTYPE=<tagtype lists>]
[WHERE<data condition>] [PASSWORD=<"“access_password” >]
Parameters: [DATA FIELD] = This parameter can be any data type defined in “Data Field
Definitions” on page 22. For more details, see “Understanding [READ FIELD]
and [WRITE FIELD] Parameters” on page 74.

[READ FIELD] = This parameter consists of a list of data types that define the
format of the data returned from a tag. Using data types INT, HEX, and STRING,
specific data can be read from any memory location on a tag. Any number of data
types can be specified in a [READ FIELD| parameter. Note that the ERASE
command allows only even addresses and lengths.

not include the optional memory_bank parameter that applies only to EPCglobal
Class 1 Gen 2 tags. For help understanding the memory bank, see the description of
the memory_bank parameter on “HEX(memory_bank:address, length)” on

page 24.

§ Note: The INT, HEX, and STRING data types in this [READ FIELD] parameter do

[TAGTYPE] = This parameter represents the type of tag that is written.

[WHERE] = This parameter can be any expression defined in “Data Conditions”
on page 28.

[PASSWORD)] = This specific keyword is used to specify a password to access the
data fields that are locked.

Errors: The following errors are reported by the ERASE command.
Error 1:
ERASEERR<CRLF>
OK><CRLF>
This error indicates that hat the tag has failed to erase the data in the tag.
Error 2:
PVERR<CRLF>
OK><CRLF>
This error indicates that the data at the specified address has been previously locked.
Error 3:
PWERR<CRLF>
OK><CRLF>

This error only applies to EPC Global Class 1 Gen 2 tags and can be returned to any
command that writes to a tag.

Basic Reader Interface Programmer’s Reference Manual 43

Chapter 4 — BRI Commands

Examples:

FACDFLT

Purpose:

Syntax:

Examples:

HELP

Purpose:

Syntax:

Examples:

HWCC

HWID

Purpose:

Syntax:

Examples:

HWPROD

Purpose:
Syntax:

Examples:

44

ERASE STRING(18,5)

This ERASE command will erase all data at address 18 on any tags currently in the
reader field. An example of the response for a single tag is written is shown below:

ERASEOK<CRLF>
OK><CRLF>

The FACDFLT command resets all reader attributes to the factory default
configuration and also resets the reader. For a list of default values, see “Default
Factory Configuration” on page 3.

FACDFLT<CRLF>
If checksums are enabled, use this command to reset the reader:

FACDFLTF4<CRLF>

The HELP command displays a list of all the BRI commands supported by the
reader.

HELP
To show the list of available BRI commands, use this command:

OK>HELP<CRLF>

The HWCC command returns the country code information that is stored in the
reader device. This code is used to determine the region text returned from the
HWREGION command. For more information, go to “HWREGION” on page 45.

The HWID command returns a unique identifier that represents the reader module.
The response is a line of characters of arbitrary length determined by the reader.

HWID
OK>HWID<CRLF>
23510642505<CRLF>
OK>

The HWPROD command returns the product name of the reader.

HWPROD
OK>HWPROD<CRLF >
IM5<CRLF>

OK>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

HWREGION

Purpose: The HWREGION command returns the region data for the reader.

Syntax: HWREGION
Examples: OK>HWREGION<CRLF>
FCC 915MHz CC014<CRLF>
OK>

Country Code Values and Region Data

Country Code Region Data

CC002 ETSI 302 208 V1.2.1 865MHz CC002
CC003 ETSI 300-220 869 MHz CC003
CCo004 FCC 915 MHz CC004

CCO005 ETSI 300-220 869MHz CC005
CC008 South Korea 910 MHz CC008
CCO012 ETSI 302-208 865MHz CC012
CCo14 FCC915MHz CC014

CCO016 Taiwan 923MHz CCO016
CCo17 Australia 918MHz CC017
CCO018 South Korea 910MHz CC018
CC019 Thailand 920MHz CC019
CC020 Australia 920MHz CC020
CC021 New Zealand 921Mhz CC021
CC022 Brazil 915MHz CC022

CC026 Hong Kong 910MHz CC026
CCo27 Japan 953MHz CC027

CC028 Malaysia 919MHz CC028
CC030 Singapore 920MHz CC030
CC031 Singapore 920 MHz CC031
CC032 Asia 920MHz CC032

CC033 Indonesia 902MHz CC033
CC034 China 902MHz CC034

CCO035 Philippines 918MHz CCO035
CC036 South Africa 915MHz CC036
CC037 Israel 915MHz CC037

For information on how to return the CC value, see the HWCC command on
“HWCC” on page 44.

Basic Reader Interface Programmer’s Reference Manual

45

Chapter 4 — BRI Commands

HWVER

Purpose:
Syntax:

Examples:

KILLTAG

LOCK

46

Purpose:

Syntax:

Parameters:

Examples:

Purpose:

&

Syntax:

Parameters:

If the BRI is unable to determine the country code for a particular module, the BRI
will return the following message:

HWREGION<CRLF>

REGION UNKNOWN <CRLF>

OK><CRLF>

The HWVER command returns the board version level of the reader.

HWVER
OK>HWVER<CRLF >
2B3<CRLF>

OK>

The KILLTAG command supports the EPC Class 1 Gen 2 KILL operation.

KILLTAG [TAGTYPE=<tagtype list>] [WHERE<data condition>]
[PASSWORD=<kill>]

[TAGTYPE] = This parameter represents the type of tag that is written.

[WHERE] = This parameter can be any expression defined in “Data Conditions”
on page 28.

[PASSWORD)] = This specific keyword is used to specify a password to access the
data fields that are locked.

OK>KILLTAG WHERE EPCID=H3003000000FF8600000D056903
PASSWORD=HO09FB6C13<CRLF>

OK>

The LOCK command is provided to maintain backward compatibility with previous
BRI versions.

The command may only be used by ISO 18000-6B tags. If you are using EPC Global
Class 1 Gen 2 tags, the LOCK command will function similarly to the WRITE
command and will not protect any memory. In case lock control is required for
other types of tags, use the command described on “PROTECT” on page 48.

Note: This command may eventually be removed when ISO 18000-6B tags are no
longer supported. Applications are advised to start using the PROTECT command.

LOCK [DATA FIELD] [WRITE FIELD] [TAGTYPE=<“tagtype list”>]
[WHERE <data condition>] [PASSWORD=<“access password” >]

[DATA FIELD] = This parameter can be any data type defined in “Data Field
Definitions” on page 22.

Basic Reader Interface Programmer’s Reference Manual

PING

Errors:

Examples:

Purpose:

%

Syntax:

Parameters:

Example:

Chapter 4 — BRI Commands

[WRITE FIELD] = This [WRITE FIELD] parameter consists of a list of data types
that define the format of the data returned from a tag. Using data types INT, HEX,
and STRING, specific data can be read from any memory location on a tag. Unlike
the [READ FIELD] parameter, TAGID can be used in a [WRITE FIELD] parameter.
The tag memory locations that store the tag identifier are locked at manufacturing
time and cannot be changed. For details, see “Understanding [READ FIELD] and
[WRITE FIELD] Parameters” on page 74.

[TAGTYPE] = This parameter represents the type of tag that is written.

[WHERE] = This parameter can be any expression defined in “Data Conditions”
on page 28.

[PASSWORD)] = This specific keyword is used to specify a password to access the
data fields that are locked.

The following errors can be reported by the LOCK command.

Error 1:

LCKERR<CRLF>

OK><CRLF>

This error indicates that the tag failed to lock the data in the tag.

Error 2:

PVERR<CRLF>
OK><CRLF>
This error indicates that the data at the specified address has been previously locked.

LOCK STRING(18,5)="HELLO”

This LOCK command with a [WRITE FIELD] parameter will lock all tags found
with the data HELLO starting at address 18 in the tag. An example of the response
for a single tag is shown below:

LCKOK<CRLF>

OK><CRLF>

The PING command lets an application check if the reader is available and
communicating as expected.

Note: The BRI PING command is not similar to the ICMP ping command.

PING<TIME | TIMESTAMP>

<TIMESTAMP> = This parameter allows you to get an approximate relation
between the reader’s time stamp timer and the application’s notion of absolute time.
PING<CRLF>

OK><CRLF>

PING TIME<CRLF>

4535606

OK>

Basic Reader Interface Programmer’s Reference Manual 47

Chapter 4 — BRI Commands

The returned time indicates that 4535.606 seconds have passed since the BRI session
was started or the reader module was reset.

PLATDFLT

Purpose: The PLATDFLT command resets all reader attributes to the platform default
configuration. These values are different from the factory default settings. These
settings are set through a platform configuration interface, such as SmartSystems.

Syntax: PLATDFLT

PRINT

Purpose: The PRINT command lets you view the contents of a macro.
Command Shortcut: PR
Syntax: PRINT $<NAME>
Parameters: <NAME> = This parameter specifies the name of the macro.
Examples: Example 1:

This command causes the reader to return all attributes and command line
parameter settings stored under the macro name MYREADMACRO:
PRINT SMYREADMACRO<CRLF>

The data is returned in a format that can be used in a subsequent BRI command.
Example 2:
The PRINT command can also be used to display any arbitrary strings.

PRINT MY STRING <CRLF>

MY STRING<CRLF>

OK.<CRLF>

PRINT MY MACRO IS: SMYREADMACRO<CRLF>

MY MACRO IS: READ WHERE TAGID=HE2001050<CRLF>
OK><CRLF>

PROTECT

Purpose: The PROTECT command lets you turn memory access locks ON or OFF in
EPCglobal Gen 2 tags.

Use the ON keyword to lock and the OFF keyword to unlock.

Syntax: PROTECT(ON|OFF)[PERMANENT]<READ FIELD> [TAGTYPE=<tagtype list]
[WHERE<data condition>] [PASSWORD=<access_passwords>]

Parameters: [PERMANENT] = This reserved keyword specifies permanent locking and
unlocking of memory access locks. If permanent lock flag is set, the specified
memory bank can be read, but never be unlocked or written to again. If the
permanent unlock flag is set, the specified memory bank can never be locked in the
tag, and the data can always be read or written to at any time.

48 Basic Reader Interface Programmer’s Reference Manual

Errors:

Chapter 4 — BRI Commands

<READ FIELD> = This parameter can be any data type defined in “Data Field
Definitions” on page 22. For more details, see “Understanding [READ FIELD]
and [WRITE FIELD] Parameters” on page 74.

The part of the tag that is locked or unlocked is determined by this parameter. Note
that when the PROTECT command is protecting memory bank 0, which is the
password memory bank, it contains an ACCESS and a KILL password. Memory
bank 0 contains 8 bytes of information and each password is 4 bytes long. These
passwords can be protected independently. Also, if no memory bank is specified in
the <READ FIELD>, the command will default to memory bank 1, the EPCID
memory bank.

The following <READ FIELD> specifiers can be used to protect the ACCESS and
KILL passwords:

HEX(0:4,4) represents the ACCESS password.
HEX(0:0,4) represents the KILL password.

Issuing the PROTECT command with these <READ FIELD> parameters will protect
the specified password.

[TAGTYPE] = This parameter represents the type of tag that is written.

<data condition> = This parameter can be any expression defined in “Data
Conditions” on page 28. The PROTECT command will operate on the set of tags
determined by the [WHERE<data condition>] clause. If the WHERE clause is
omitted, the command will operate on all tags that are in the field.

[PASSWORD)] = This specific keyword is used to specify a password to access the
data fields that are locked.

<access> = This is the EPC Class 1 Gen 2 access password expressed as a binary
hexadecimal value. This password is required to execute a lock operation (LOCK,
LOCKP, UNLOCK, UNLOCKP) and to execute a write operation on locked data.

A tag holds just one access password and therefore the same password applies to
both operations executed on a tag.

The PROTECT command syntax allows the access password to be specified on a
lock operation such as LOCK=<access> and a write operation such as
PASSWORD=<access>. If both operations are executed then both access passwords
must be equal.

(ON|OFF) = The ON keyword allows you to lock the specified memory bank. Once
data in a memory bank is protected with the ON keyword, new data cannot be
written to the locked memory bank.

The OFF keyword allows you to unlock the specified memory bank.
The following errors are reported by the PROTECT command.
Error 1:

PVERR<CRLF>
OK><CRLF>

PVERR indicates that an incorrect password has been supplied to the command, or
that the memory space has already been locked using the ON keyword.

Basic Reader Interface Programmer’s Reference Manual 49

Chapter 4 — BRI Commands

Examples:

READ

50

Purpose:

Command Shortcut:

Syntax:

Error 2:

PWERR<CRLF>

OK><CRLF>

PWERR indicates that the tag does not have enough power to complete the
PROTECT operation.

The examples below assume that the ACCESS password is 0, and the response to
each command is LCKOK<CRLF>0K><CRLF>.

Example 1:

PROTECT ON HEX(1:4,12)

This command will lock memory bank 1 on the EPC Global Gen 2 tag. Once it is
locked, data can always be read, but new data cannot be written until a PROTECT
OFF command is issued.

Example 2:

PROTECT ON PERMANENT HEX (1:4,12)

This command will permanently lock memory bank 0 on the EPC Global Gen 2 tag.
Once in, data can never be written into this memory space once protected with the
PERMANENT keyword. Data can always be read from this memory bank 1 after
execution of this command.

Example 3:

PROTECT OFF PERMANENT HEX(1:4,12)

This command will permanently unlock memory bank 0 on the EPC Global Gen 2
tag. Data can always be read or written from or to memory bank 1 after execution of
this command. Note that once a memory bank is permanently unlocked, any

PROTECT command will be ignored if issues to the permanently unlocked memory
bank.

The READ command controls how tag information is collected and reported. The
READ command supports two collection modes:

* In Singleshot mode, the reader executes the set number of IDTRIES or
ANTTRIES, or continues reading until the IDTIMEOUT or ANTTIMEOUT
timer expires, and returns all tags that are found. The number of tags found
depends on the number of tags in the field. The singleshot mode may return
NOTAG if no tags are present in the reader’s field and the NOTAGRPT attribute
is enabled.

* In Continuous mode, the reader continuously collects tags and stores the tags in
an internal tag list. If the tag list gets full, the oldest tag in the list is removed.

Singleshot mode is enabled by default. To enter continuous mode, you have to use
the REPORT parameter.

RorRD

READ [DATA FIELD|LITERAL]*[TAGTYPE=<tagtype list>] [WHERE<data
condition>] [PASSWORD=<“access_ password” >]
[REPORT=EVENT |NO| EVENTALL] [STOP|POLL]

Basic Reader Interface Programmer’s Reference Manual

Parameters:

Chapter 4 — BRI Commands

[DATA FIELD] = This parameter can be any data type defined in “Data Field
Definitions” on page 22. For more details, see “Understanding [READ FIELD]
and [WRITE FIELD] Parameters” on page 74.

If the READ command does not contain a [READ FIELD], the BRI uses a default
based on the tag type:

* For ISO 18000-6B tags, TAGID is used as the default.
* For all other tags, EPCID is used as the default.

[LITERAL] = This parameter can be any text string surrounded by double quotes.
The text string will be printed in the command response at the same point as it
appeared in the command string, which lets you improve the readability of the data
returned from the BRI. There is no limit to the number of [LITERALS] you can
include in a command. For details, see “Understanding the [LITERAL]
Parameter” on page 90.

[TAGTYPE] = This parameter represents the type of tag that is written.

[WHERE] = This parameter can be any expression defined in “Data Conditions”
on page 28.

[PASSWORD] = This specific keyword is used to specify a password to access the
data fields that are locked.

[REPORT=value] = This reserved keyword determines if you are in Singleshot or
Continuous mode:

* REPORT=EVENT enables Continuous mode with event messages. The collected
tags are stored in the tag list, and a tag event message is immediately reported for
each detected tag that is not already on the tag list. The event message is delayed
if the RPTTIMEOUT attribute is set to a non-zero value; for help, see
“RPTTIMEOUT” on page 82. The Tag event message is sent only once: when
the tag is first added to the tag list. If a tag exits the field and is later identified
again, no Tag event message is sent because the tag is already on the tag list. You
can send the READ POLL command to clear the tag list. After you clear the tag
list, if a tag is identified again, the tag is added to the tag list (because the list was
empty) and the Tag event message is sent. If the tag list becomes full, the oldest
tag is removed from the tag list.

* REPORT=NO enables Continuous mode with no event messages. The collected
tags are stored in the tag list, but no event messages are reported. If the tag list
becomes full, the oldest tag is removed from the list. You can send the READ
POLL command to return the contents of the tag list.

* REPORT=EVENTALL enables Continuous mode with event messages. The
collected tags are store in the tag list, and a tag event message is immediately
reported for each detected tag that is not already on the tag list. In this mode,
tags will continuously be reported as they are read.The event message is delayed
if the RPTTIMEOUT attribute is set to a non-zero value; for help, see
“RPTTIMEOUT” on page 82.

If the reader is in Continuous mode and a new command with REPORT=EVENT or
REPORT=NO is received, the reader ends the collection process based on the
previous command and restarts the collection process based on the new command.

Basic Reader Interface Programmer’s Reference Manual 51

Chapter 4 — BRI Commands

52

Errors:

[POLL] = You issue the READ POLL command with no other parameters. If the
reader is in Continuous mode, the READ POLL command reports the contents of
the tag list and removes each reported tag from the tag list. If the reader is in
Singleshot mode, the READ POLL command returns OK>.

[STOP] = You issue the READ STOP command with no other parameters. If the
reader is in Continuous mode, the READ STOP command clears the tag list, does
not report the contents of the tag list, and enables Singleshot mode. If the reader is
in Singleshot mode, no tags are reported, and the reader remains in Singleshot
mode.

Note: The READ STOP command forces the reader to exit Continuous mode
cleanly. All commands (except ATTRIBUTE, READ POLL, WRITEGPO, READGPI,
TRIGGER, TRIGGERREADY, and PING) force the reader to exit Continuous mode.

These error codes are reported by the READ command.
Error 1:

ERR<CRLF>

OK><CRLF>

This error indicates that a general BRI error has occurred.
Error 2:

RDERR<CRLF>

OK><CRLF>

This error indicates that the data read from the tag was invalid.
Error 3:

MEMOVRN<CRLF >

OK><CRLF>

This error indicates that the address used in the read command was not available on
the tag. This tag is only returned when the TAGTYPE attribute contains EPCC1G2.

Error 4:
DISPLAYERR<CRLF>
OK><CRLF>

This error indicates that the amount of data requested from the tag will not fit into
the output buffer in the BRI service. Clients should execute additional read
commands with smaller access requests. The BRI output buffer is 512 bytes.

Error §:
The read command may also the error below when the NOTAGRPT attribute is ON.

NOTAG<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Examples: These examples demonstrate how to use the READ command.

the some of these examples do not include the optional memory_bank parameter
that applies only to EPCglobal Class 1 Gen 2 tags. For help understanding the
memory bank, see the description of the memory_bank parameter on
“HEX(memory_bank:address, length)” on page 24.

§ Note: The INT, HEX, and STRING data types in the [READ FIELD] parameters in

Example 1:
READ TAGID

This READ command with a TAGID parameter and no <DATA CONDITION>
parameter finds all tags in the field and returns a tag ID for each tag found. Each tag
ID is terminated with a <CRLF>. When all tags are returned, the BRI returns
OK><CRLF>. If no tags are found, the BRI returns NOTAG<CRLF>OK><CRLF>.
For example:

1234567890ABCDEFH<CRLF>

OK><CRLF>

Example 2:

READ TAGID WHERE TAGID=H1234567890ABCDEF

This READ command with a <DATA CONDITION> parameter defined above finds
a tag with the specified tag identifier. If a tag with the specified TAGID is found, the
BRI returns the tag identifier followed by OK><CRLF>. If the tag identifier is not
found, the BRI returns NOTAG<CRLF>OK><CRLF>. For example:

1234567890ABCDEFH<CRLF >
OK><CRLF>

Reader attributes affect the command responses:

* Ifthe IDREPORT attribute is enabled, each response is prefixed with the tag ID
or EPC code. For help, see “IDREPORT” on page 79.

e If the NOTAGRPT attribute is disabled, the BRI returns OK><CRLF> instead of
NOTAG<CRLF>OK><CRLF>. For help, see “NOTAGRPT” on page 82.

If you want to match any tag that contains a tag ID starting with H123456, you can
use the following command:

The ?? wildcard character pair matches any character in that position. The question
mark pairs must represent a two-character hex value:

* TAGID=123?7?678 is notvalid and causes an ERR response.
e TAGID=12??5678 isvalid

§ Note: Wildcard characters do not work with EPC Global Gen 2 tags.
Also, if the TAGID being matched begins from the start of the TAGID information,

you can leave off the question mark pairs. The following <DATA CONDITION>
parameter is identical to the one above:

READ TAGID WHERE TAGID=H123456

Basic Reader Interface Programmer’s Reference Manual 53

Chapter 4 — BRI Commands

54

The question mark pairs are implied by the command line parser since a TAGID
data type requires up to 16 characters and only six are specified. If fewer than the
required number of characters are supplied, implied question mark pairs are
inserted to fill the remainder of the field data.

Example 3:

READ TAGID WHERE STRING(18,5)=“HELLO”

This READ command with a <DATA CONDITION> parameter looks for data on
the tag starting at tag memory address 18 through address 22 that matches the
string HELLO. The command matches the text between the double quotes. The BRI
returns the tag ID of each tag that contains this data string. Each tag that is found is
followed by a <CRLF> sequence. When all tags are found matching the <DATA
CONDITION> parameter, the BRI returns the tag identifier followed by
OK><CRLF>. If no tags are seen matching this data, the BRI returns
NOTAG<CRLF>OK><CRLF>. For example:

H1234567890ABCDEF<CRLF>

OK><CRLF>

Example 4:

READ INT(18,2)

This READ command with a [READ FIELD] parameter finds all tags and returns
the integer value stored at tag memory addresses 18 and 19 on each tag found. The
data is returned as a decimal integer value followed by a <CRLF> sequence. No tag
ID information is returned in this case, only the data read from the specified address
on each of the tags. When all tags are found and the data is returned, the BRI
returns OK><CRLF>. If no tags are seen, the BRI returns
NOTAG<CRLF>OK><CRLF>. If the [READ FIELD] parameter fails, the BRI returns
RDERR<CRLF>OK><CRLF> for the result. For example:

1234<CRLF>

OK><CRLF>

If an error occurred in reading the data from the tag, the response is:

RDERR<CRLF>
OK><CRLF>
Example 5:

READ INT(18,2),INT(20,2)

This READ command with multiple [READ FIELD] parameters finds all tags and
returns the data value stored at locations 18 and 19 and locations 20 and 21 on each
tag found. Any [READ FIELD| parameter that fails to read returns RDERR for that
parameter. When all the [READ FIELD] parameters and all tags have been
processed, the BRI returns OK><CRLF>. If no tags are found, the BRI returns
NOTAG<CRLF>OK><CRLF>.

Here are three example responses to this READ command.
This example response shows a successful read:

READ INT(18,2),INT(20,2)
1234 5678<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

This example response shows an error reading the value INT (10, 2):

READ INT(18,2),INT(20,2)

1234 RDERR<CRLF>

OK><CRLF>

This example response shows how to add the [READ FIELD]| TAGID to return the
tag identifier for each tag read:

READ TAGID, INT(18,2),INT(20,2)

H1234567890ABCDEF 1234 5678<CRLF>

OK><CRLF>

Example 6:

READ “TAG ID:”,TAGID

This READ command with a [LITERAL]| parameter prints the string TAG ID:
followed by a tag identifier and a <CRLF>. For example:

TAG ID:H1234567890ABCDEF<CRLF>

OK><CRLF>

Example 7:

READ INT(0:0,4) PASSWORD=HO9FB6C13

This READ command accesses the EPCglobal Gen 2 password memory bank 0. This
READ may require a password. For more information,

Example 8:

READ INT(0:0,4) WHERE EPCID=H3003000000FF8600000F0569

This read command access the EPCglobal Gen 2 password memory bank 0 that has
not been locked. The <data condition> parameter specifies a unique EPCID to
match for reading.

Example 9:

READ WHERE AFI=H95
This only include tags where the AFI bits equal hexadecimal 0x95.

READGPI

Purpose: The READGPI command returns a value that indicates the current state of all the
general purpose (GP) input lines available on a specific reader. The value returned is
an integral representation of the bit field corresponding to the output pins available
on the reader device. The READGPIO command is the same as the READGPI
command, and has been included to maintain backwards compatibility with
previous versions of the BRI. For details, see the documentation that shipped with
the reader.

Note that regardless of the hardware, the BRI will return the following when all of
the inputs on a reader are active:
READGPI<CRLF>
0<CRLF>
OK><CRLF>
Syntax: READGPI<CRLF>

Basic Reader Interface Programmer’s Reference Manual 55

Chapter 4 — BRI Commands

Examples:

REPEAT

56

Purpose:

Command Shortcut:
Syntax:

Parameters:

Examples:

Example 1:

In this example, a reader has 2 general purpose outputs. The following table
describes the possible values returned by the BRI for the READGPI and the
associated states of each of the inputs.

Possible Values Returned for a Reader With 2 General Purpose Outputs

BRI Value Pin 1 State Pin 2 State
0 Active Active

1 Active Inactive

2 Inactive Active

3 Inactive Inactive
Example 2:

Use this command to check the state of all GP input lines in a reader:

READGPI<CRLF>

The response is formatted as follows for a reader with four GP input lines:
15<CRLF>

OK><CRLF>

The code indicates that all four inputs are ON.

The REPEAT command causes the last READ or WRITE command to be executed
again.

When a READ or WRITE command is executed by the BRI, all command line
parameters are stored in the reader. If a complex command has been sent, the
REPEAT command provides a shortcut method of executing the command multiple
times without sending the entire command sequence.

You can also use the REPEAT command to re-issue a previous READ or WRITE
command that failed.

RPT

REPEAT <VALUE><CRLF>

<VALUE> = This parameter can be a number from 1 to 65534 and specifies the
number of times to repeat the command. If <VALUE> is omitted, the REPEAT
command will execute the last command one time. Also, if the last repeatable
command was a continuous read, the repeat value is ignored and the command is
executed once.

These examples demonstrate how to use the REPEAT command.
Example 1:

READ<CRLF>
H1234567890ABCDEF<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

REPEAT 2<CRLF>
H1234567890ABCDEF<CRLF>
H1234567890ABCDEF<CRLF>
OK><CRLF>

Example 2:

ATTRIB IDTRIES;READ;ATTRIB IDTRIES<CRLF>
IDTRIES=1<CRLF>
H1234567890ABCDEF<CRLF>
IDTRIES=1<CRLF>
OK><CRLF>

REPEAT 2<CRLF>
IDTRIES=1<CRLF>
H1234567890ABCDEF<CRLF>
IDTRIES=1<CRLF>
IDTRIES=1<CRLF>
H1234567890ABCDEF<CRLF>
IDTRIES=1<CRLF>
OK><CRLF>

RESET

Purpose: The RESET command causes the reader to execute a warm boot. A reset will perform
a total software restart of the reader module. There are no parameters to specify.

Syntax: RESET<CRLF>
Examples: This command warm boots the reader:
RESET<CRLF>
OK><CRLF>

After the RESET command has been executed, an event will be reported to all
current BRI sessions:

EVT:RESET<CRLF>
For help, see “Understanding EVENT Messages” on page 97.

SET

Purpose: The SET command lets you create both command macros and parameter macros,
which are defined in “Creating and Using BRI Macros” on page 100. You can also
use SET to list all macros stored in the reader’s non-volatile memory and to delete
macros.

Syntax: SET <NAME>="“[BRI COMMAND], [READ FIELD]or [WRITE FIELD],
[LITERAL], [(ATTRIBUTE NAME=VALUE) ...]TAGID,ANTENNA,
TIMESTAMP, WHERE <DATA CONDITION>"

Basic Reader Interface Programmer’s Reference Manual 57

Chapter 4 — BRI Commands

58

Parameters:

Examples:

<NAME> = This parameter can be any alphanumeric string. There is no limit on the
length of the <NAME> parameter, and it can be as short as one character. The first
character must be a letter (A-Z or a-z). The first character cannot be a number (0-9).
You cannot use BRI reserved keywords as macro names; for a complete list of
reserved words, see “Reserved Keywords” on page 17.

If you do not include anything after the <NAME> parameter, the SET command
displays all macros stored in the reader’s nonvolatile memory.

If you do not specify anything after the equals sign, the SET command deletes the
macro specified in the <NAME> parameter.

“[BRI COMMAND], [READ FIELD]or [WRITE FIELD],
[LITERAL], [(ATTRIBUTE NAME=VALUE) ...]TAGID, ANTENNA,

TIMESTAMP, WHERE <DATA CONDITION>” = Everything you specify after the equals
sign must be enclosed in one set of double quotes. Everything inside the double
quotes is saved as the contents of the macro. If the macro contains [LITERAL]
parameters, which must also be enclosed in double quotes, you must use the \
character to escape the embedded double-quotes around each [LITERAL]
parameter.

To display all macros in memory, use the SET command with no parameters:
SET<CRLF>

<macro><CRLF>

<macro><CRLF>

OK><CRLF>

These examples demonstrate how to use the SET command.
Example 1:

The example below illustrates how to store a WHERE clause and TAGID parameter
in a macro named MYREADMACRO.

SET MYREADMACRO=“WHERE TAGID=H1234567890ABCDEF”<CRLF>
OK><CRLF>

To execute this macro definition with a READ command, use the command line
below:

READ $SMYREADMACRO<CRLF>

H1234567890ABCDEF<CRLF>

OK><CRLF>

Example 2:

This example includes the command and command line parameters.

SET YOURREADMACRO=“READ TAGID WHERE INT (20,2)=2000”<CRLF>
OK><CRLF>

To execute this command, use the command line below:
SYOURREADMACRO<CRLF>

H1234512345123456<CRLF>

H2468246824682468<CRLF>

OK>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

SWVER

Purpose: The SWVER command returns the current firmware version of the reader module.
Syntax: SWVER

Examples: OK>SWVER<CRLF>
9.04<CRLF>
OK>

TRIGGER

Purpose: The TRIGGER command creates, deletes, and displays trigger events that are based
on the state of the GP inputs supported by the reader.

The maximum number of triggers you can create is 10. The available nonvolatile
memory must also be used for macros. If this memory space overflows, the BRI
returns MERR.

§ Note: Intermec recommends that you do not create more than ten triggers.

Syntax: TRIGGER [RESET|DELETEALL|<“NAME”> <GPIO|GPIOEDGE> <MASK>
<VALUE> FILTER<DELAY> [ACTION“MACRO NAME”]]

Parameters: [RESET] = This reserved keyword completely resets the entire triggering system.
This command deletes all triggers from memory and removes all trigger events from
the event queue. This command returns the triggering system to a known state. You
do not specify any other parameters when you issue a TRIGGER RESET command.

[DELETEALL] = This reserved keyword removes from memory all programmed
triggers. This command does not delete queued trigger events from the reader. You
do not specify any other parameters when you issue a TRIGGER DELETEALL
command.

<NAME> = This parameter specifies the name of the trigger. You must enclose the
name in double quotes. The affect of the <“NAME”> parameter depends on the
optional parameters:

* When you include optional parameters such as GPIO or MASK, the trigger is
created and stored in the reader with the name given in the <NAME> parameter.
If a trigger already exists with the given name, it is updated with the new
parameter information, and the trigger is reset if it is currently active.

* When you omit optional parameters, the trigger with the name specified is

deleted.

[GPIO or GPIOEDGE MASK value FILTER delay| = These optional parameters are
defined in the following description of how a trigger operates.

When a trigger has been created, it immediately enters the DETECTION state. In
the DETECTION state, the GPIO inputs are scanned until a fire condition is
detected:

* When GPIO is used, the fire condition occurs when the current GP input state
masked (ANDed) with the mask parameter is equal to the value.

Basic Reader Interface Programmer’s Reference Manual 59

Chapter 4 — BRI Commands

60

Examples:

* When GPIOEDGE is used, the fire condition is the transition from the state
where the input state masked (ANDed) with the mask parameter is not equal to
the value to a state where the input state masked (ANDed) with the mask
parameter is equal to the value.

When this input condition is true, a trigger event is stored on an internal queue and
the trigger enters the FIRED state. The trigger remains in the FIRED state for the
number of milliseconds given by the FILTER delay parameter, after which it re-enters
the DETECTION state. If level triggering is used, when the DETECTION state is re-
entered after expiration of the delay time, the input state may not have changed (the
fire condition still exists) and that causes a new “firing” of the trigger.

GPIOEDGE trigger event messages, radio event messages, and tag event messages
are sent directly without any internal queueing.

Trigger event messages from level triggered GPIO triggers are queued internally in
the reader.

This queue has two states:
e BLOCKED
¢« READY

The queue is initially in the BLOCKED state. Every 200 milliseconds, the event
queued is monitored to determine whether the queue is in the READY state and
there is at least one event queued. If both conditions are met, then a queued event is
reported asynchronously from the reader to the host and the queue is returned to
the BLOCKED state. The host must issue a TRIGGERREADY command to
transition the queue to the READY state. The reader stores up to ten events. If more
than ten events are held, the oldest event is overwritten.

[ACTION] = This parameter allows the commands given by the macro to be
executed upon detection of the fire condition.

For example, one trigger could start doing READs in continuous mode, while
another event is also sent to the application about the trigger condition.This event
could be used to inform the application to start reading the collected data. The
application could then send a READ POLL followed by a READ STOP to retrieve the
data collected since the initial trigger. This makes it possible to validate the contents
of the macro, and if it is invalid, an ERR is returned by the TRIGGER command.
Note that ACTIONS are neglected while the reader is in READER CONTINUOUS
mode.

These examples demonstrate how to use the TRIGGER command.

The first two examples are set up as a dock-door solution. They define one trigger
that waits for input 1 to go high and a second trigger that waits for input 2 to go
high. The latter four examples show that trigger conditions can be configured to
combine several inputs. The inputs 2 and 3 are used by these triggers and any
combination of values on these generate a trigger event, but the event generated
depends on the combined value.

Example 1:

TRIGGER RESET<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Responses:

Chapter 4 — BRI Commands

TRIGGER “Dock door #43” GPIO 1 1 FILTER 5000<CRLF>

OK><CRLF>

TRIGGER<CRLF>

Dock door #43 GPIO 1 1 FILTER 5000<CRLF>

OK><CRLF>

TRIGGER “Dock door #44” GPIO 2 2 FILTER 5000<CRLF>

OK ><CRLF>

TRIGGER “Special 00”7 GPIO 12 0 FILTER 500<CRLF>

OK ><CRLF>

TRIGGER “Special 01” GPIO 12 4 FILTER 500<CRLF>

OK ><CRLF>

TRIGGER “Special 10”7 GPIO 12 8 FILTER 500<CRLF>

OK ><CRLF>

TRIGGER “Special 11” GPIO 12 12 FILTER 500<CRLF>

OK><CRLF>

Example 2:

The TRIGGER command with no parameters displays the currently programmed
triggers as shown in the following example:

TRIGGER<CRLF>

Dock door #43 GPIO 1 1 FILTER 5000<CRLF>

Dock door #44 GPIO 2 2 FILTER 5000<CRLF>

Special 00 GPIO 12 0 FILTER 500<CRLF>

Special 01 GPIO 12 4 FILTER 500<CRLF>

Special 10 GPIO 12 8 FILTER 500<CRLF>

Special 11 GPIO 12 12 FILTER 500<CRLF>

OK><CRLF>

Example 3:

The TRIGGER DELETEALL command removes from memory all programmed
triggers. This command does not delete queued trigger events from the reader.
TRIGGER DELETEALL<CRLF>

OK><CRLF>

TRIGGER<CRLF>

OK><CRLF>

Example 4:

The TRIGGER RESET command completely resets the entire triggering system.
This command deletes all triggers from memory and removes all trigger events from
the event queue. This command returns the triggering system to a known state.
TRIGGER RESET<CRLF>

OK><CRLF>

TRIGGERREADY Command

For details about EVENT messages, see “Understanding EVENT Messages” on
page 97.

Basic Reader Interface Programmer’s Reference Manual 61

Chapter 4 — BRI Commands

TRIGGERCANCEL

Purpose: The TRIGGERCANCEL command will terminate a TRIGGERREADY command
that has been issued, and no event occurred.

Syntax: TRIGGERCANCEL

TRIGGERQUEUE

Purpose: The TRIGGERQUEUE command lets an application determine if queued events are
available. This command returns an integer value stating the number of currently
queued trigger events available in the reader.

Command Shortcut: TRIGGERQ

Syntax: TRIGGERQUEUE [FLUSH] <CRLF>
Parameters: [FLUSH] = This reserved keyword deletes all trigger events from the queue.

Examples: These examples demonstrate how to use the TRIGGERQUEUE command.
Example 1:

This example shows that three trigger events are available in the queue, which means
that three subsequent invocations of TRIGGERREADY can be sent without any
blocking occurring:

TRIGGERQUEUE<CRLF >

3<CRLF>

OK><CRLF>

Example 2:

This example shows how to check how many trigger events are in the queue, remove
all trigger events from the queue, and then check the queue again:
TRIGGERQUEUE<CRLF >

3<CRLF>

OK><CRLF>

TRIGGERQUEUE FLUSH<CRLF>

OK><CRLF>

TRIGGERQUEUE

0<CRLF>

OK><CRLF>

Responses: For details about EVENT messages, see “Understanding EVENT Messages” on
page 97.

TRIGGERREADY

Purpose: TRIGGERREADY is used by the application to transition the reader’s event queue to
the READY state. When issued, this command enables the asynchronous reporting
of the oldest trigger event in the reader’s event queue. Events are reported in the
same order as they were originally queued.

If you send a TRIGGERREADY command, but no trigger event has been configured,
the BRI ignores the command and returns OK><CRLF>.

62 Basic Reader Interface Programmer’s Reference Manual

Command Shortcut:
Syntax:
Parameters:

Responses:

Examples:

TRIGGERWAIT

Purpose:

Command Shortcut:
Syntax:
Parameters:

Responses:

Examples:

Chapter 4 — BRI Commands

TRIGRDY

TRIGGERREADY [CANCEL]<CRLF>

[CANCEL] = This reserved keyword terminates a TRIGGERREADY command that
was issued if no event has occurred yet.

For details about EVENT messages, see “Understanding EVENT Messages” on
page 97.

These examples demonstrate how to use the TRIGGERREADY command.
Example 1:

In this example, the reported GPIO state 11 (8+2+1) indicates that when the trigger
fired, inputs 0, 1, and 3 were all high, and input 2 was low:

TRIGGERREADY<CRLF>

OK><CRLF>

EVT:TRIGGER Dock door #43 GPIO 11<CRLF>

Example 2:

In this example, you can use this command to terminate a TRIGGERREADY
command that was issued if no event has occurred yet.

TRIGGERREADY CANCEL<CRLF>

TRIGGERWAIT is used by the application to transition the reader’s event queue to
the READY state. The TRIGGERWAIT command is the same as the TRIGGERWAIT
command, and has been included to maintain backwards compatibility with
previous versions of the BRI.

When issued, this command enables the asynchronous reporting of the oldest
trigger event in the reader’s event queue. Events are reported in the same order as
they were originally queued.

If you send a TRIGGERWAIT command, but no trigger event has been configured,
the BRI ignores the command and returns OK><CRLF>.

TRIGGERW, TRIGWAIT

TRIGGERWAIT [CANCEL]

[CANCEL] = This reserved keyword terminates a TRIGGERWAIT command that
was issued if no event has occurred yet.

For details about EVENT messages, see “Understanding EVENT Messages” on
page 97.

These examples demonstrate how to use the TRIGGERWAIT. In this example, the
reported GPIO state 11 (8+2+1) indicates that when the trigger fired, inputs 0, 1,
and 3 were all high, and input 2 was low:

TRIGGERWAIT<CRLF>

OK><CRLF>

EVT:TRIGGER Dock door #43 GPIO 11<CRLF>

Basic Reader Interface Programmer’s Reference Manual 63

Chapter 4 — BRI Commands

VERSION

Purpose:

Command Shortcut:
Syntax:

Examples:

WRITE

64

Purpose:

Command Shortcut:

Syntax:

Parameters:

Example 2:

In this example, you can use this command to terminate a TRIGGERWAIT
command that was issued if no event has occurred yet.

TRIGGERWAIT CANCEL<CRLF>

The VERSION command displays general version information about the platform
and reader module. This command has no parameters.

VER

VERSION

VERSTION<CRLF>

IM5 RFID Reader Ver 9.11<CRLF>

Basic Reader Interface Version 3.01<CRLF>

FCC 915MHz CCO014<CRLF>

Copyright (C) 2008 Intermec Technologies Corp.<CRLF>
OK>

The WRITE command stores user-specified information on the tag in the specified
locations.

There are no limitations on ISO 18000-6B tags for the WRITE command.

For EPCglobal Class 1 Gen 2 tags, there is a limitation on the addresses and lengths
of data that can be written. EPCglobal Class 1 Gen 2 tags support writing only to
words or 16-bit values. As a result, you must write even-length values to even-byte
addresses. This limitation is illustrated in the examples below.

The WRITE command may return NOTAG if no tags are present in the reader’s field
and the NOTAGRPT attribute is enabled.

W or WR

WRITE <DATA FIELD> [DATA FIELD]* [TAGTYPE=<tagtype lists>]
[WHERE<data condition>] [PASSWORD=<"“access password>]

[DATA FIELD] = This parameter can be any data type defined in “Data Field
Definitions” on page 22. For more details, see “Understanding [READ FIELD]
and [WRITE FIELD] Parameters” on page 74.

If a specified data field is not read only, a value must be specified that will be written
to the field. If a specified data field is read only, a value must not be specified. Read
only data fields can be included in WRITE commands and will be returned with the
tag report once writing has completed. Furthermore, at least one data field is
required for a write command to be executed.

To specify a value to write to a non-read only data field, the data field should be
immediately followed by an equals sign. See the examples section for examples.

[TAGTYPE] = This parameter represents the type of tag that is written. This is a
shortcut provided to eliminate the need for changing the TAGTYPE attribute for a
single write command.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

[WHERE] = This parameter can be any expression defined in “Data Conditions”
on page 28.

[PASSWORD)] = This specific keyword is used to specify a password to access the
data fields that are locked.

Errors: These error codes are reported by the WRITE command.
Error 1:
WRERR<CRLF >
OK><CRLF>
This error indicates that the data being written to the tag failed.
Error 2:
MEMOVRN<CRLF >
OK><CRLF>
This error indicates that the address used in the WRITE command was not available
on the tag. This is only returned when the TAGTYPE attribute contains EPCC1G2.
Error 3:
PVERR<CRLF>
OK><CRLF>
This error indicates that an incorrect password has been provided when writing to
an EPCglobal Gen 2 tag, or the address being written has previously been locked.

Error 4:

PWERR<CRLF>
OK><CRLF>
This error indicates that the tag did not have enough power to complete the WRITE
command when writing to an EPCglobal Gen 2 tag.
Examples: These examples demonstrate how to use the WRITE command.
Example 1:
WRITE INT(10,2)=3 HEX(12,2)=H12CD TAGTYPE=G2

The data field parameters specified above will write at tag memory address 10, and a
value of 3 will be written. The data 0x12 and 0xCD will be written to locations 12
and 13 respectively.

Example 2:

WRITE STRING(18,5)="HELLO” TAGTYPE=G2

This WRITE command with a [WRITE FIELD] parameter writes all tags found with
the data HELLO starting at address 18 in the tag. Each tag written responds with the
status of the WRITE command terminated with a <CRLF>. When all tags are
written, the BRI returns WROK<CRLF>0K><CRLF>. If no tags are written, the BRI
returns NOTAG<CRLF>0K><CRLF>. Here is an example response when a single tag
is written:

WROK<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 65

Chapter 4 — BRI Commands

66

For an EPCglobal Class 1 Gen 2 tag, this example returns the ADERR error response
because the data to be written does not have an even length:

WRITE STRING(10,5)="HELLO” <CRLF>

ADERR<CRLF>

Here is a valid WRITE command for an EPCglobal Class 1 Gen 2 tag:

WRITE STRING(10,4)="GOOD”<CRLF>
WROK<CRLF>

OK><CRLF>

Example 3:

WRITE STRING(10,5)="HELLO” TAGTYPE=G2
WHERE TAGID=H1234567890ABCDEF

This WRITE command with a TAGID parameter in the WHERE clause and the
specified [WRITE FIELD] parameter writes the text string HELLO starting at tag
memory address 10 to the tag whose tag identifier matches that specified in the
command. When the tag is found and written correctly, the BRI returns the status of
the WRITE command terminated by a <CRLF>. When all tags are found and
successfully written, the BRI returns WROK<CRLF>OK><CRLF>. If the tag was not
found, the BRI returns NOTAG<CRLF>OK><CRLF>. Here is an example of a
successful response to this WRITE command:

WROK<CRLF>

OK><CRLF>

If you want to write to any tag that has a tag ID starting with H123456, you can use
the following command:

WROK<CRLF >

OK><CRLF>

For an EPCglobal Gen 2 tag the proper valid command, you can use the following
command:

WRITE STRING(10,4)="TEST” WHERE TAGID=H12345678<CRLF>
WROK<CRLF >

OK><CRLF>

Example 4:

WRITE STRING(10,4)="GOOD” WHERE STRING(10,3)="“BAD”

This WRITE command with a <DATA CONDITION> and a [DATA FIELD]
parameter looks for tags with data on a tag starting at address 10 through address
12 that matches 3 characters of the string BAD. The BRI writes the data GOOD
starting at address 10 through address 13.

The BRI returns WROK<CRLF>OK><CRLF> for each successfully written tag. If an
error occurs during the WRITE command, the BRI returns WRERR in the field that
failed to write. If no tags are seen matching the data condition, the BRI returns
NOTAG<CRLF>OK><CRLF>. Here is an example successful response to this
WRITE command:

WROK<CRLF>

OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Example 5:

WRITE STRING(10,4)="GOOD”,STRING(14,2)="0K"

This WRITE command with two [WRITE FIELD] parameters writes two strings to
all tags. After writing the data GOOD starting at address 10 and OK starting at
address 40, the BRI returns the status of the WRITE command when the last write
has completed. The BRI returns WRERR if any of the data was not successfully
written or with WROK if the write was successful. If no tags are seen matching the
data condition, the BRI returns NOTAG<CRLF>OK><CRLF>.

Here are two example responses to this WRITE command.
In this example, both fields were correctly written:

WROK WROK<CRLF>
OK><CRLF>
In this example, the second write (writing FINE starting at address 30) failed:

WROK WRERR<CRLF>

OK><CRLF>

Example 6:

WRITE TAGID STRING(18,4)="GOOD”,STRING(30,4)="FINE"

This WRITE command presents two command parameters that can be used with
the WRITE command. Normally, TAGID is associated with the READ command or
a <DATA CONDITION>. However, you might want to know which tags have been
written. Specifying TAGID on the command line causes the BRI response to return
the tag identifier for each tag that is written.

The BRI command shown above writes the data GOOD starting at address 18 and
FINE starting at address 30 and responds with the tag identifier of any tags written,
followed by WROK for the successfully written fields, followed by OK><CRLF> when
the last write has completed. If an error occurs during the write command, the BRI
returns WRERR for the field that was not successfully written. If no tags are seen
matching the data condition, the BRI returns NOTAG<CRLF>OK><CRLF.

One other write error that can occur is a privilege error. This error is caused by a
reader attempting to write to tags that it does not own. Each reader that has
privileges enabled is only capable of writing to owned tags. If a privilege error is
encountered, the BRI returns PVERR in place of WRERR.

Here are three example responses to this WRITE command.

In this example response, both fields were successfully written:
H1234567890ABCDEF WROK WROK<CRLF>

OK><CRLF>

In this example response, there was an error writing FINE to the tag:
H1234567890ABCDEF WROK WRERR<CRLF>

OK><CRLF>

In the this example response, a privilege error was encountered and no data was
written to the tag:

H1234567890ABCDEF PVERR PVERR<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 67

Chapter 4 — BRI Commands

%

WRITEGPO

68

Purpose:

Syntax:
Command Shortcut:

Parameters:

Examples:

Note: The INT, HEX, and STRING data types in the [WRITE FIELD] parameters in
the some of the previous examples do not include the optional memory_bank
parameter that applies only to EPCglobal Class 1 Gen 2 tags. For help
understanding the memory bank, see the description of the memory_bank parameter
on “HEX(memory_bank:address, length)” on page 24.

The WRITEGPO command sets the state of all the GP output lines available on a
specific reader. Each reader has a unique set of GP output lines that are described in
the documentation shipped with the reader. The WRITEGPIO command is the
same as the WRITEGPO command, and has been included to maintain backwards
compatibility with previous versions of the BRI

OK><CRLF>

WRITEGPO< [=VALUE] > | [PIN <ON|OFF>]>

WRGPI

<VALUE> = This parameter specifies a number between 0 and 15, assuming a

maximum number of four GP output lines. A value of 0 turns all lines ON, and a
value of 15 turns all lines OFF.

Bitwise Outputs

The <VALUE> parameter is an integral representation of the bit field corresponding
to the output pins available on the reader device.

Note that regardless of hardware, the BRI will enable all of the outputs with the
following command is entered:

WRITEGPO=0<CRLF>
Direct Pin Outputs

When an output pin is specified, the BRI is capable of modifying the state of an
individual output without an application having to calculate the bit mask (this
calculation is impossible to do when multiple applications are modifying the
output, as it is not possible to read the output state).

Example 1:

In this example, a reader has 2 general purpose outputs. The following table
describes the possible values returned by the BRI for the WRITEGPO and the
associate states of each of the outputs.

Possible Values Returned for a Reader With 2 General Purpose Outputs

BRI Value Pin 1 State Pin 2 State
0 On On
1 On Off
2 Off On
3 Off Off

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Example 2:
The following example turns on the first output on a device, and then turns it off.

WRITEGPO 1 ON<CRLF>
OK><CRLF>

WRITEGPO 1 OFF<CRLF>
OK><CRLF>

BRI Extensions for NXP Tags

This section lists BRI extensions that are specific NXP RFID tags.

NXPALARM

Purpose: An extension to the READ command. When a READ command is executed with
NXPALARM, the reader executes a read operation where only NXP tags with the
EAS bit set are identified. This bit can be enabled when using the NXPEAS
command.

Note: No other data fields can be requested when executing the READ command
§ with the NXPALARM extension.

Responses are not generated for each tag that is identified with the EAS bit enabled.
Only a single alarm message will be generated, even if multiple NXP tags are
identified with the EAS bit set.

If EVENT is specified as the report type, an NXPALARM event is generated once an
NXP tag with the EAS bit is identified.

If EVENTALL is specified, an NXPALARM event is continuously generated while an
NXP tag with the EAS bit set is in the reader field.

The READ STOP command should be used to stop the READ NXPALARM
operation when in continuous mode.

Syntax: READ NXPALARM [TAGTYPE=EPCC1G2] [REPORT=EVENT | EVENTALL]|
Examples: READ NXPALARM

ALARM<CRLF>
OK><CRLF>

READ NXPALARM REPORT=EVENT

OK><CRLF>
EVT:NXP ALARM<CRLF>

Basic Reader Interface Programmer’s Reference Manual 69

Chapter 4 — BRI Commands

NXPCONFIG

Purpose:

Syntax:

NXPEAS

Purpose:

Syntax:

READ NXPALARM REPORT=EVENT
OK><CRLF>

EVT:NXP ALARM<CRLF>
EVT:NXP ALARM<CRLF>
EVT:NXP ALARM<CRLF>

EVT:NX PALARM<CRLF>

[...]

An extension to the WRITE command. WRITE NXPCONFIG modifies the 16 NXP
configuration bits in a tag’s memory. For more information, see the NXP
documentation.

To modify the NXPCONFIG field of a tag, a non-zero access password is required,
and no other writable data fields may be specified.

WRITE NXPCONFIG=<hex value> [TAGTYPE=EPCC1G2]| [WHERE
<data_condition>] PASSWORD="password"

An extension to the WRITE command. WRITE NXPEAS is used to control the EAS
EEPROM of an NXP tag. When the EAS system bit of an NXP tag is set, the tag
responds to the custom NXPALARM command. For more information, see the
“NXPALARM” on page 69.

WRITE NXPEAS=<ON | OFF> [TAGTYPE=EPCC1GZ] [WHERE <data_c0ndition>]
PASSWORD=“password”

NXPREADPROTECT

Purpose:

Syntax:

An extension to the WRITE command. WRITE NXPREADPROTECT prevents the
reading of the EPCID by returning all zeros.

WRITE NXPREADPROTECT=<ON|OFF> [TAGTYPE=EPCC1G2| [WHERE
<data_condition>] PASSWORD=“password”

BRI Extensions for Fujitsu Tags

FJBURSTERASE

Purpose:

Syntax:

70

This section lists BRI extensions that are specific to Fujitsu RFID tags.

FJBURSTERASE implements the BurstErase command which erases (writes “0”) to

multiple words in a tag’s memory. If an attempt is made to erase locked memory,
PVERR is returned.

FJBURSTERASE (<bank>:<address>, <length>) [, (bank:<address>,<length>)]*
[TAGTYPE=<tagtype_list>] [WHERE <data_condition>]
[PASSWORD=<access_password>]

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Examples: Example 1:
FJBURSTERASE (3:0,128) <CRLF>
H3035307B2831B380B0000C8F ERASEOK<CRLF>
OK><CRLF>
Example 2:

FJBURSTERASE (3:128,128) <CRLF>
H3035307B2831B380B0000C8F PVERR<CRLF>
OK><CRLF>

FJBURSTWRITE

Purpose: An extension to the WRITE command. WRITE FJBURSTWRITE implements the
Fujitsu BurstWrite command. <data_field> uses the same syntax as for other BRI
write commands. FJBURSTWRITE applies to <data_fields> of type INT, STRING,
and HEX. The BurstWrite command operates on even word addresses and even
word lengths while BRI uses byte addresses and byte lengths. The offsets and
lengths specified in <data_field> must be evenly divisible by 4 to satisfy the
requirements of the BurstWrite command.

If FJBURSTWRITE attempts to write to locked memory PVERR is returned.

Syntax: WRITE FJBURSTWRITE <data_field> [data_field]* [TAGTYPE=<tagtype_list>]
[WHERE <data_condition>] [PASSWORD=<access_password>|

Examples: Example 1:
WRITE FJBURSTWRITE HEX (3:0,4)=H12345678<CRLF>
H3035307B2831B380B0000C8F WROK<CRLF>
OK><CRLF>
Example 2:
WRITE FJBURSTWRITE HEX (3:128,4)=H12345678<CRLF>
H3035307B2831B380B0000C8F PVERR<CRLF>
OK><CRLF>

FJCHGBLOCKGROUPPWD

Purpose: An extension to the WRITE command. WRITE FJCHGBLOCKGROUPPWD
implements the Fujitsu ChgBlockGroupPwd command, and changes the password
of a given block group.

Syntax: WRITE FJCHGBLOCKGROUPPWD(<group >,<oldpassword>,<newpassword>)
[TAGTYPE=<tagtype_list>] [WHERE <data_condition>]

<group> = Integer from 0 to 31.
<oldpassword> = 32 bit block group password.
<newpassword> = 32 bit block group password.

Exanqﬂe& WRITE FJCHGBLOCKGROUPPWD (0,0x0,0x11223344)<CRLF>
H3035307B2831B380B0000C8F WROK<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 71

Chapter 4 — BRI Commands

FJCHGBLOCKLOCK

Purpose:

Syntax:

Examples:

An extension to the WRITE command. WRITE FJCHGBLOCKLOCK implements
the Fujitsu ChgBlockLock command. ChgBlockLock changes the BlockLock flags
in a BlockGroup with a password.

WRITE FJCHGBLOCKLOCK(<group>,<action>,<mask>,<password>)
[TAGTYPE=<tagtype_list>] [WHERE <data_condition>]

<group> = Integer from 0 to 31.

<action> = Integer from 0 to 65535.
<mask> = Integer from 0 to 65535.
<password> = 32 bit block group password.

WRITE FJCHGBLOCKLOCK (0,O0xffff,0xffff,0x11223344)<CRLF>
H3035307B2831B380B0000C8F LCKOK<CRLF>
OK><CRLF>

FJCHGWORDLOCK

Purpose:

Syntax:

Examples:

An extension to the WRITE command. WRITE FJCHGWORDLOCK implements
the Fujitsu ChgWordLock command. This command changes one of two WordLock
flags using the associated block group password.

WRITE FJCHGWORDLOCK (<bank>:<address>, <password>)=<payload> [,
(<bank>:<address>,<password>)=<payload>|* [TAGTYPE=<tagtype_list>] [WHERE
<data_condition>]

<bank> = Memory bank, must be 3, other values are reserved for future use.
<address = Integer memory byte address (must be evenly divisible by 4).
<password> = 32 bit block group password.

<payload> = Integer from O to 15.

WRITE FJCHGWORDLOCK (0,0x11223344)=0xf<CRLF>
H3035307B2831B380B0000C8F LCKOK<CRLF>
OK><CRLF>

FJREADBLOCKLOCK

72

Purpose:

Syntax:

Examples:

An extension to the READ command. READ FJREADBLOCKLOCK implements the
Fujitsu ReadBlockLock command. ReadBlockLock read the BlockLock flags in a
BlockGroup.

READ FJREADBLOCKLOCK(<group>) [, FREADBLOCKLOCK(<group>)]
[TAGTYPE=<tagtype_list>] [WHERE <data_condition>]

<group> = integer from 0 to 31.

READ FJREADBLOCKLOCK (0) <CRLF>

H3035307B2831B380B0000C8F HOOOO<CRLF>
H3035307B2831B380B0000C90 HFFOO<CRLF>

OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

BRI Extensions for Impinj Monza 4 Tags

READ IMPINJQT

Purpose:
Syntax:

Example:

WRITE IMPIN)QT

Purpose:

Syntax:

Example:

This section lists BRI extensions that are specific Impinj Monza 4 tags. The Impinj
Monza 4 tags implement a 16-bit QT status field and a custom command to read
and write the QT field.

The most significant bit (QT_SR) controls the range of the tag’s response. When set,
the tag reduces the strength of its backscattered signal to reduce the range which the
tag can be read.

The second significant bit (QT_MEM) controls whether the tag presents the public
or private memory map to the reader. When set, the tag exposes its public memory
map.

For more information on the Impinj Monza 4 tags, see the product specification for
Impinj Monza 4 tags.

Use this command to read the QT status. The result is a 16-bit hexadecimal value
representing the QT status bits from the tag.

READ IMPINJQT [TAGTYPE=<tagtype list>| [WHERE <data condition>|
[PASSWORD=<"access_password">]

In this example, the first tag has both the QT_SR and the QT_MEM bits cleared (set
for normal-range and private memory map). The second tag has both bits set (set for
short-range and public memory map).

Use this command to write to the QT status field.

WRITE IMPINJQT=H<Data> {PERMANENT} [TAGTYPE=<tagtype list>] [WHERE
<data condition>] [PASSWORD=<"access_password">]

<Data> = Contains a 16-bit value representing the contents of the QT status field to
be written. The most significant bit is the QT_SR which controls the short-range/
normal-range setting of the tag. The next most significant bit is the QT_MEM bit
which controls the public/private memory map setting of the tag.

Example 1:

WRITE IMPINJQT=HO0O0O0O
H300833B2DDD901400000000000000000 WROK

Temporarily set the tag for normal range and private memory map.
Example 2:

WRITE IMPINJQT=HCOO0O
H300833B2DDD901400000000000000000 WROK

Temporarily set the tag for short range and public memory map.

Basic Reader Interface Programmer’s Reference Manual 73

Chapter 4 — BRI Commands

Example 3:

WRITE IMPINJQT=HCO000 PERMANENT
H300833B2DDD901400000000000000000 WROK

Permanently set the tag for short range and public memory map.

Understanding [READ FIELD] and [WRITE FIELD] Parameters

Error checking occurs when a command is executed. If the syntax of the parameter is
invalid, an error is reported. If the error occurs during the execution of a command,
the appropriate response is returned from the BRI

When reading or writing data from or to a tag, the entire address space of the tag is
available.

For example, suppose a [READ FIELD] parameter was specified as INT (126, 4)
and the maximum tag memory address was 127. When the BRI executes this
command, it returns RDERR because this [READ FIELD] parameter is asking to
read four memory locations starting at address 126 (trying to read locations 126,
127,128, and 129). This would try to read data two tag memory locations past the
end of tag memory.

[READ FIELD] Examples

To read a STRING value 15 characters long at address 30:
READ STRING (30,15)

To read a HEX value eight characters long at address 100:
READ HEX (100, 8)

To read a four-byte INT value on the tag at address 18:
READ INT(18,4)

To read a STRING value of five characters, a HEX value of seven characters, an INT
value four-bytes long, and an INT value located at addresses 20, 25, 32, and 36
respectively:

READ STRING(20,5),HEX(25,7),INT(32,4),INT(36,1)

[WRITE FIELD] Examples

74

Use this command to write a STRING value that is eleven characters long to address
18 with the data HELLO WORLD:

WRITE STRING(18,11)="HELLO WORLD”

Use this command to write a four-byte INT value to address 23 with data
1,234,567:

WRITE INT (23,4)=1234567

Use this command to write three one-byte INT values and two 2-byte INT values to
addresses 20, 30, 40, 50, and 52 with data the A, 10,20,600 and 2000 hexadecimal,
respectively:

WRITE NT(20,1)='A’,INT(30)=10,INT(40,1)=20,INT(50,2)=600,
INT (52, 2)=H2000

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Understanding the <ATTRIBUTE NAME> Parameter

This section describes the reader attributes you specify in the <ATTRIBUTE NAME>
parameter in ATTRIBUTE commands. For help using the ATTRIBUTE command,
see “ATTRIBUTE” on page 34.

You can use this command to display the current values for the reader attributes on
your reader:

ATTRIBUTE<CRLF>

The BRI returns a list of attributes that varies based on the current setting for the
TIMEOUTMODE attribute:

* If TIMEOUTMODE is enabled, then ANTTIMEOUT and IDTIMEOUT appear
in the list.

* If TIMEOUTMODE is disabled, then ANTTRIES and IDTRIES appear in the
list. (TIMEOUTMODE is disabled by default.)

The reader attributes are all reserved keywords, as listed in “Keywords Reserved for
Reader Attributes” on page 20.

ANTENNAS or ANTS

Sets the antenna sequence to be used during READ and WRITE commands. This
parameter is reader-dependent because different readers have different numbers of
antennas.

ATTRIBUTE ANTS=n,n,n,n,n,n,n,n
where 7 is a number between 1 and 4 which identifies an antenna.

You can specify up to eight » values. This attribute is limited to values up to the
number of antennas supported on the reader. The default s 1.

This example tells the reader to turn on the second antenna:

ATTRIBUTE ANTS=2

This example tells the reader to read or write tags using the antenna pattern

specified:
ATTRIBUTE ANTS=1,2,1,3,1,4,1<CRLF>

Basic Reader Interface Programmer’s Reference Manual 75

Chapter 4 — BRI Commands

ANTTIMEOUT

ANTTRIES

BAUD

BTPWROFF

76

%

Sets the maximum time period (ms) during which each antenna is used for a READ
or WRITE command. The maximum value for this attribute is 65534. The default is
50.

For help setting this attribute, see “Understanding the Timeouts and Tries” on

page 86.

Note: This attribute applies only if TIMEOUTMODE is enabled. Otherwise,
ANTTRIES applies.

Sets the number of times each antenna is used for a READ or WRITE command.
The range of values for this attribute is 1 to 254. The default is 3.

For example:

ATTRIBUTE ANTTRIES=4

For help setting this attribute, see “Understanding the Timeouts and Tries” on
page 86.

Note: This attribute applies only if TIMEOUTMODE is disabled. Otherwise,
ANTTIMEOUT applies.

Note: If your BRI application communicates with the reader over a TCP connection,
you cannot modify this attribute from the default. For details, see “BRI TCP
Applications” on page 3.

Sets the reader baud rate for serial readers. You can set this parameter to 19200,
38400, 57600, or 115200. The default is 115200.

For example:

ATTRIBUTE BAUD=115200<CRLF>
OK><CRLF>

The baud rate change takes effect after the OK><CRLF> is transmitted. This allows
the host time to change its baud rate before sending the next BRI command.

Sets the time period (in seconds) for which the Bluetooth radio (if available) will
search for a Bluetooth connection. If no connection is created during the configured
time period, the Bluetooth radio will be turned off completely to save power in
mobile applications. The range of value is 30 to 3600 seconds. The default value is
300 seconds.

Basic Reader Interface Programmer’s Reference Manual

CHKSUM

%

%

Chapter 4 — BRI Commands

Note: If your BRI application communicates with the reader over a TCP connection,
you cannot modify this attribute from the default. For details, see “BRI TCP
Applications” on page 3.

Configures the reader to include a checksum value in returned data. The checksum
is two characters sent just prior to the command delimiter. For more details, see
“Using Message Checksums” on page 16.

You can set this attribute to ON or OFF. The default is OFF.

This example enables transmission of the response checksum data:
ATTRIBUTE CHKSUM=ON<CRLF>

This example disables transmission of the response checksum data:
ATTRIBUTE CHKSUM=OFFC9<CRLF>

Note: If the CHKSUM attribute is enabled (CHKSUM=0N), the TTY and ECHO
attributes are automatically disabled (TTY=OFF and ECHO=0OFF).

DENSEREADERMODE

ECHO

Enables or disables the dense reader mode operation. This mode only applies when
the TAGTYPE list contains only the EPCglobal Class 1 Gen 2 tagtype. These tags
will respond with Miller Sub carrier encoded data instead of FMO encoded data. You
can set this attribute to ON or OFF.

The default is OFF.

Note: If your BRI application communicates with the reader over a TCP connection,
you cannot modify this attribute from the default. For details, see “BRI TCP
Applications” on page 3.

Allows each command character to be returned back to the host device. You can set
this attribute to ON or OFF. The default is OFF.
This example enables command echoing to the host device:

ATTRIBUTE ECHO=ON

This example disables command echoing to the host device:

ATTRIBUTE ECHO=OFF

Note: If the CHKSUM attribute is enabled, you cannot enable ECHO. If you attempt
to enable the ECHO attribute, the BRI returns ERR.

Basic Reader Interface Programmer’s Reference Manual 77

Chapter 4 — BRI Commands

EPCC1G2PARAMETERS

FIELDSEP

FIELDSTRENGTH

78

This numeric attribute allows the user to select a set of EPCC1G2 protocol
parameters. The value must be one of the IDs listed in the responses to CAP
EPCC1G2PARAMETERS. An alias for this attribute is EPCC1G2PARMS. For
example:

ATTRIB EPCC1G2PARMS=1<CRLF>

OK><CRLF>

ATTRIB EPCC1G2PARMS<CRLF>

EPCC1G2PARMS=1<CRLF>

OK><CRLF>

This attribute allows the user to change the output format character used in the
BRI. The default output field separator is the ASCII space character (0x20). The
default value is the space character. Note that this attribute can be modified when
using a TCP connection.

Th following table shows the values that are allowed for the FIELDSEP attribute.

FIELDSEP Attribute Values

Common Name BRI Representation
Space «»

«»

Comma s

«,»

Colon
Semicolon “”
Tab “\t”
Caret wha

Tilde AP

The example shown below shows you how to change the BRI output character to a
tab:

ATTRIB FIELDSEP="\t”

Controls the RF power level for each antenna. You can specify a different value for
each antenna between 15 and 30 dB. The default value is 30 dB.

Two input modes are supported for the IELDSTRENGTH attribute, you can enter
a FIELDSTRENGTH value using a numeric scale or dB value. It is recommended
that you use a dB value. The numeric scale is deprecated and is supported for
backward compatibility of older versions of the BRI

To enter values in dB, you must follow the numerical values with “dB”. Valid values
are 15 to 30 dB. For example:

OK>ATTRIBUTE FIELDSTRENGTH=30dB, 15dB, 16dB, 25dB<CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Reducing the signal by 3dB is equivalent to cutting the output power in half. For
example, 27 dB is half as strong as 30 dB, and 24 dB is half as strong as 27 dB. 30 dB
represents 1 watt of output power. Some regulatory domains limit the reader output
power to less than 1 watt. If a reader is configured for one of these domains, entering
30 dB will result in maximum output power which will be less than 1 watt.

For entering in a numerical scale, the valid values are 25 to 100. You enter in these
values in increments of S. If you enter in values that are not multiples of 5, the value
that was entered will be rounded down to the nearest multiple. Every 5 steps on the
numerical scale is equivalent to 1 dB as shown in the following table.

Numerical Values and Their Equivalent dB Values

Numeric Value Equivalent dB value

25 15dB
30 16 dB
35 17 dB
40 18 dB
45 19dB
S0 20 dB
55 21dB
60 22 dB
65 23dB
70 24 dB
75 25dB
80 26 dB
85 27 dB
90 28 dB
95 29dB
100 30dB

IDREPORT

Configures the BRI to return tag identifiers when a command is executed. This
applies to both ISO and EPC tag types:

* ForISO tags, the tag identifier corresponds to TAGID.
* For EPC tags, the tag identifier corresponds to EPCID.
You can set this attribute to ON or OFF. The default is OFF.

§ Note: This attribute default for the IF61 Fixed Reader is ON.

This example enables the display of each tag identifier for each READ or WRITE
command:

ATTRIBUTE IDREPORT=ON

Basic Reader Interface Programmer’s Reference Manual 79

Chapter 4 — BRI Commands

IDTIMEOUT

IDTRIES

INITIALQ

80

%

%

This example disables the display of each tag identifier for each READ or WRITE
command:

ATTRIBUTE IDREPORT=OFF

Sets the maximum time period (ms) during which attempts are made to find tags
before a response is returned to a READ or WRITE command. The maximum value
for this attribute is 65534. The default is 100.

If you notice that all your antennas are not being used, it is possible that the reader
does not have time to cycle through all the antennas before the timeout expires. You
might want to increase the timeout.

For help setting this attribute, see “Understanding the Timeouts and Tries” on
page 86.

Note: This attribute applies only if TIMEOUTMODE is enabled. Otherwise,
IDTRIES applies.

Sets the number of times an attempt is made to find tags before a response is
returned to a READ or WRITE command. The range of values for this attribute is 1
to 254. The default is 1.

For help setting this attribute, see “Understanding the Timeouts and Tries” on

page 86.

Do not set the IDTRIES attribute to 0. The BRI returns ERR if you attempt to set
the attribute to 0.

This example tells the RFID reader identify algorithm to execute three times in order
to find all the tags that may be in the field:

ATTRIBUTE IDTRIES=3<CRLF>

Note: This attribute applies and only if TIMEOUTMODE is disabled. Otherwise,
IDTIMEOUT applies.

Establishes the initial Q parameter value used by the Query command for
EPCglobal Class 1 Gen 2 tags only. The range of values for this attribute is 0 to 15.
The default is 4.

If you know that there is only one tag in the field, you should set this attribute to 0
for the best possible performance.

This attribute applies only to EPCglobal Class 1 Gen 2 tags.

Basic Reader Interface Programmer’s Reference Manual

INITTRIES

LBTCHANNEL

Chapter 4 — BRI Commands

Sets the initialization tries variable in the reader. The range of values for this
attribute is 1 to 254. Intermec recommends that you leave this attribute set to the
default, which is 1.

For help setting this attribute, see “Understanding the Timeouts and Tries” on

page 86.
This example sets the INITRIES attribute to 1:

ATTRIBUTE INITTRIES=1<CRLF>

Do not set the INITTRIES attribute to 0. The BRI returns ERR if you attempt to set
this attribute to 0.

Determines which channels will be the default transmit channel when executing the
Listen Before Talk algorithm. LBTCHANNEL sets the default transmit channel of
the available ETSI 302-208 channels. When you enable LBT scanning, the channel
scan sequence starts with this LBT channel. When LBT scanning is disabled, (as in
the 4 channel mode) the LBT channel is the only channel used. The range for 10
channel mode is 4 to 13. The default for 10 channel mode is 8, and for 4 channel
mode the defaultis 7.

With 865 MHz readers, channels 4 to 13 are available. The default is 8.
With 953 MHz readers (special build), channel 1 to 9 are available. The default is S.

LBTSCANENABLE

&

LBT scanning is enabled, by default in ETSI 10 Channel mode in accordance with
302-208.

Note: LBT scanning is permanently disabled in ETSI 4 channel mode in accordance
with 302-208 v1.2.1.

When LBT scanning is enabled, the algorithm scans the available ETSI 302-208
channels for a free transmit channel.

In continuous read mode, the scan sequence begins with the channel specified by
LBTCHANNEL and every third channel is checked (for example, 8,11, 4,7, 10, 13, 6,
9, 12, 5) until a free channel is found. If a free channel is not found, LBT repeats the
scan sequence.

In single-shot read mode, LBT scanning goes through all available channels at once.
If no free channel is found, the reader will report “NOTAG” and abort the inventory
operation.

When LBT scanning is disabled, the reader does not scan for a free transmit channel,
and the transmit channel is set by the LBTCHANNEL BRI attribute.

The valid values in 4 channel mode are 4, 7, 10, 13.

If LBTSCANENABLE is set to ON, the LBT algorithm will find a free channel from
the 10 allowed.

Basic Reader Interface Programmer’s Reference Manual 81

Chapter 4 — BRI Commands

LOCKTRIES

NOTAGRPT

%

RDTRIES

RPTTIMEOUT

82

If LBTSCANENABLE is set to OFF, the transmit channel will be set by the attribute
LBTCHANNEL.

Sets the number of times the lock algorithm is executed before a response is
returned to a LOCK command. The range of values for this attribute is 1 to 254. The
default is 3.

This example tells the RFID reader lock algorithm to execute up to two times in
order to lock data on the specified tags:

ATTRIB LOCKTRIES=2<CRLF>

Allows the BRI to send a NOTAG message to notify you when no tags were found to
operate on. You can set this attribute to ON or OFF. The default is OFF.

This example enables NOTAGRPT, so that the NOTAG message is sent:

ATTRIBUTE NOTAGRPT=ON
This example disables NOTAGRPT, so that no message is sent:

ATTRIBUTE NOTAGRPT=OFF
Note: By default, NOTAGRPT is disabled. However, the examples in this manual

assume that the NOTAGRPT attribute is enabled. For details about other
assumptions, see “Conventions Used in This Manual” on page 5.

Sets the number of times an attempt is made to read data from a tag before a
response is returned to a READ command. The range of values for this attribute is 1
to 254. The default is 3.

This example tells the RFID reader to execute the read algorithm up to a maximum
of five times on each [READ FIELD] specified in a READ command line:

ATTRIBUTE RDTRIES=5<CRLF>

Sets the time period (ms) to delay the reporting of tag events when the reader is in
Continuous mode (REPORT=EVENT). The range of values for this attribute is 0 to
65534. The default is 0.

If RPTTIMEOUT is set to 0, there is no delay. A report is sent for each tag found in
the ID round directly after the completion of the ID round.

If RPTTIMEOUT is set to a non-zero value, a timer is loaded with the value upon:
* acontinuous operation starts, such as READ REPORT=EVENT command.
* anew RPTTIMEOUT value is set with the ATTRIBUTE command.

* anew report is available and the timer expired flag is set.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

When the started timer expires, the timer is stopped and a new timer expired flag is
set. The timer expired flag is cleared each time the time is started.

SCHEDULEOPT

Determines how antennas are switched during the inventory process. This attribute
controls the behavior of the inventory scheduling parameters such as
ANTTIMEOUT, ANTTRIES, IDTIMEOUT, and IDTRIES. This attribute can have a
value of either 0, 1, or 2. The default is 0. “Understanding the Timeouts and
Tries” on page 86, describes the behavior of timeout and tries attributes when
SCHEDULEOPT is 0.

SCHEDULEQPT Value Descriptions

Value Description

0 Legacy “normal” BRI operation

1 Simplified “normal” BRI operation

2 Simplified “normal” BRI operation with EPCC1G2 A/B toggling

When SCHEDULEOPT is set to 1, the TIMEOUT attribute is ignored. The
ANTTIMEOUT and ANTTRIES attribute work together to determine how much
time is spent on a given antenna. When ANTTIMEOUT is 0, the value of ANTTRIES
defines the number of inventory rounds run on an antenna before stepping to the
next antenna. When ANTTIMEOUT is not 0, the value of ANTTRIES is ignored and
ANTTIMEOUT defines the amount of time spent on an antenna before stepping to
the next antenna.

The IDTIMEOUT and IDTRIES attributes work together to determine how much
time is spent trying to read tags. When IDTIMEOUT is zero, the value of IDTRIES
defines the number of attempts used to read tags before a response is returned from
aread or write command. When IDTIMEOUT is not zero, the value of IDTRIES is
ignored and IDTIMEOUT defines the amount of time attempting to read tags
before a response is returned.

When SCHEDULEOPT is set to 2, inventory behaves just like SCHEDULEOPT=1
except that any consecutive inventory rounds on the same antenna will toggle
between targeting tags in the A state and tags in the B state. This value only applies
to EPCC1G2 tags and is useful when dealing with tags that exhibit excessive
persistence. For example, some battery powered EPCC1G2 tags have infinite
persistence in sessions 1, 2, and 3. Once inventoried from A to B, these tags will stay
in the B state and may not be identified if the reader does not run an inventory
round targeting B tags.

SELTRIES

Sets the number of times a group select is attempted. A group select is the command
used to start the identify process. The range of values for this attribute is 1 to 254.
The defaultis 1.

ATTRIBUTE SELTRIES=1

Basic Reader Interface Programmer’s Reference Manual 83

Chapter 4 — BRI Commands

SESSION

TAGTYPE

84

%

Note: This attribute can be used for EPCglobal Class 1 Gen 2 tags, but is not
recommended.

Sets the command session parameter to a corresponding EPCglobal Class 1 Gen 2
air protocol command. You can set this attribute to 0, 1, 2, or 3. The default is 2.
The following example specifies an EPCglobal Class 1 Gen 2 Select command:
ATTRIBUTE SESSION=0<CRLF>

For details about SESSION, see the EPCglobal Inc. specification, EPC™ Radio-
Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at
860 MHz—-960 MHz Version 1.1.0.

Defines the types of RFID tags used in an application. Certain performance
improvements can be realized if it is known ahead of time what types of tags are in
use. Follow this syntax:

ATTRIBUTE TAGTYPE=identifier|[,identifier ...]

where identifier is one of the values listed in the next table.

TAGTYPE Identifiers for Each Air Protocol

Identifier Air Protocol Description
MIXED ISO 18000-6B and G1, G2 and v1.19 tags only
UCODEL119 only (MIXED mode is provided for backward

compatibility.)

ISO6BGL1 ISO 18000-6B ISO6B G1 tags

or Gl

ISO6BG2 ISO 18000-6B ISO6B G2 tags

or G2

ICODE119 UCODE119 Phillips v1.19 tags
(ISO 18000-6B emulating EPC tag IDs)

UCODE119 UCODE119 Phillips v1.19 tags

or V119 (ISO 18000-6B emulating EPC tag IDs)

EPCC1G1 EPCglobal Class 1 Gen 1 EPC global UHF Gen 1

EPCC1G2 EPCglobal Class 1 Gen 2 EPC global UHF Gen 2 tags (Default)

Note: The identifiers G1 and G2 remain for backward compatibility. G1 is
synonymous with ISO6BG1 and G2 is synonymous with ISO6BG2.

The tagtype capabilities of the reader can be queried with the CAP TAGTYPE
command. You can also specify up to eight TAGTYPE identifiers. The order of the
identifiers determines the order that the selected protocols are run. Do not specify the
same air protocol twice as this will negatively impact performance.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

The following example specifies that the application will use both ISO 18000-6B
and EPC Class 1 Gen 2 tags:

OK> ATTRIBUTE TAGTYPE=ISO6BG2,EPCC1G2

The following example specifies that the application will use Phillips v1.19 tags (ISO
18000-6B emulating EPC tag IDs):

OK>ATTRIBUTE TAGTYPE=ICODE11l9

TIMEOUTMODE

Establishes whether to use “timeout” attributes or “tries” attributes. You can set this
attribute to ON or OFF. The default is OFF.

 If TIMEOUTMODE is enabled, the IDTIMEOUT and ANTTIMEOUT attributes
apply and are displayed when the ATTRIBUTE command is issued. This means
that timeouts control how long the identify algorithm and antennas are used
during each READ or WRITE command.

* If TIMEOUTMODE is disabled, the IDTRIES and ANTTRIES attributes apply
and are displayed when the ATTRIBUTE command is issued. This means that
counters control how many times the identify algorithm and antennas are used
during each READ or WRITE command.

TTY

Note: When TTY is disabled, which is the default setting, only <LF> is recognized as
§ a command terminator; <CR> is ignored. For details, see “BRI TCP Applications”
on page 3.

Sets the command line delimiter used by the BRI. You can set this attribute to ON or
OFF. The default is OFF.

When TTY is enabled, be aware of these effects:

* The BRI command parser understands both the <CR> character (0x0D) and the
<LF> character (0x0A) as line terminators. Therefore, any command followed by
<CRLF> results in two OK> responses: the first is for the <CR> character, and the
second is for the <LF> character.

* BRI command responses are terminated with OK>. The <CRLF> is omitted.

* For multi-line responses (for example, when multiple tags return after a READ
command), each line up to the OK> line is always terminated by <CRLF>
whether TTY is enabled or disabled.

* Ifboth the TTY and CHKSUM attributes are enabled, the BRI automatically
disables the CHKSUM attribute (CHKSUM=OFF).

When TTY is disabled, be aware of these effects:

* The BRI command parser understands only the <LF> character (0x0A) as the
line terminator. For example, the HyperTerminal by default sends only <CR> to
terminate a line. Therefore, if TTY is disabled and you are using HyperTerminal,
you should select Properties > Settings > ASCII Setup and check the “Send line
ends with line feeds” check box to ensure that every command is followed by a

Basic Reader Interface Programmer’s Reference Manual 85

Chapter 4 — BRI Commands

UNSELTRIES

XONXOFF

WRTRIES

<LF> termination character. Or, you can press Ctrl-J (<LF>) to terminate a
command, instead of pressing ENTER (<CR>).

* BRI command responses are terminated with OK><CRLF>.

* For multi-line responses (for example, when multiple tags return after a READ
command), each line up to the OK> line is always terminated by <CRLF>
whether TTY is enabled or disabled.

Sets the number of times a group unselect is attempted. The range of values for this
attribute is 1 to 254. The default is 1.

ATTRIBUTE UNSELTRIES=1

This attribute enables or disables the flow control for a serial connection. The
default value for XONXOFF is OFF.

Any changes to XONXOFF will take affect after the BRI has completed the response
from the ATTRIBUTE command.

Sets the number of times an attempt is made to write data to a tag on each [WRITE
FIELD] before a response is returned to a WRITE command. The range of values for
this attribute is 1 to 254. The default value is 3.

This example tells the RFID reader to execute the write algorithm up to a maximum
of three times to write data to the specified tags:

ATTRIBUTE WRTRIES=3<CRLF>

Understanding the Timeouts and Tries

86

This section will help you determine how to set these attributes:
* ANTTIMEOUT
 IDTIMEOUT

 ANTTRIES
* IDTRIES
e INITTRIES

You need to know if the TIMEOUTMODE attribute is enabled or disabled:

* If TIMEOUTMODE is enabled, then you set ANTTIMEOUT and IDTIMEOUT.
For help, see the next section, “Setting IDTIMEOUT and ANTTIMEOUT.”

* If TIMEOUTMODE is disabled, then you set ANTTRIES, IDTRIES, and
INITTRIES. For help, see “Setting IDTRIES and ANTTRIES” on page 88 and
“Setting INITTRIES” on page 89.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Setting IDTIMEOUT and ANTTIMEOUT

When you choose values for IDTIMEOUT and ANTTIMEOUT, you need to
determine which attribute should have the larger value.

When IDTIMEOUT <= ANTTIMEOUT

If you set IDTTIMEOUT to a value smaller than or equal to ANTTIMEOUT, then
ANTTIMEOUT is a flag to indicate that the reader spends X IDTIMEOUT on each
antenna before moving to the next antenna. The total read time is approximately
equal to IDTIMEOUT multiplied by the number of antennas selected.

Suppose these attributes are set:
e IDTIMEOUT=200
e ANTTIMEOUT=600
e ANTS=1.2
e INITTRIES=1
The reader performs these steps:
1 Turn on antenna one.
2 Read tags for 200 milliseconds.
3 Switch to the next antenna.
4 Read tags for 200 milliseconds.
The total ID time = 200 * 2 = 400 milliseconds.

When IDTIMEOUT > ANTTIMEOUT

If you set IDTIMEOUT to a value greater than ANTTIMEOUT, there is a difference
between IDTIMEOUT and IDTRIES. Rather than keep track of how much time is
spent on each antenna, the IDTIMEOUT is the total ID time. It does not matter how
many antennas you select.

For example, if you set IDTIMEOUT to 500, the reader spends a total of 0.5 seconds
looking for tags. The reader switches antennas if it spends ANTTIMEOUT without
seeing any new tags. ANTTIMEOUT is reset when the reader switches antennas. In
this scenario, it is possible that the reader will not use all the antennas.

Suppose these attributes are set:
« IDTIMEOUT=500
« ANTTIMEOUT=100
e ANTS=1234
 INITTRIES=1
The reader performs these steps:
1 Turn on antenna one.
2 Reader finds tags during the first 200 milliseconds.
3 For the next 100 milliseconds, the reader sees no new tags.

4 Switch to antenna two.

Basic Reader Interface Programmer’s Reference Manual 87

Chapter 4 — BRI Commands

5 Reader finds new tags for the next 200 milliseconds.
6 Reader has searched for a total of 500 milliseconds so it stops.
The total ID time = 500 milliseconds.

In this example, the reader never used antenna three and antenna four because the
timeout expired before it had a chance to use them.

Setting IDTRIES and ANTTRIES

88

When you choose values for IDTRIES and ANTTRIES, you need to determine which
attribute should have the larger value.

When IDTRIES < ANTTRIES

If you set IDTRIES to a value smaller than ANTTRIES, the reader executes all
IDTRIES on antenna one before cycling to the next antenna. In this case,
ANTTRIES functions as a flag to indicate this mode. Its actual value has no
meaning. As long as ANTTRIES is larger than IDTRIES, this mode is active.

The total number of IDTRIES is IDTRIES multiplied by the number of selected
antennas.

Suppose these attributes are set:

« IDTRIES=2
« ANTTTRIES=6
e ANTS=1.2

e INITTRIES=1
The reader performs these steps:
1 Turn on antenna one.
2 Read no new tags.
3 Read 1 new tag.
4 Switch to the next antenna.
5 Read no tags.
6 Read no tags.

The total number of ID tries =2 * 2 = 4.

When IDTRIES >= ANTTRIES

If you set IDTRIES to a value greater than or equal to ANTTRIES, the reader
performs a total of X IDTRIES on each antenna. However, if there are Y ANTTRIES
in a row with no new tags found, the reader cycles to the next antenna. The reader
comes back to any antenna that has not completed all X IDTRIES and finishes them
using the same rules. The reader resets ANTTRIES whenever it switches antennas.

The total number of IDTRIES is equal to IDTRIES multiplied by the number of
selected antennas.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Suppose these attributes are set:

« IDTRIES=4
e ANTTTRIES=2
e ANTS=1.2

e INITTRIES=1

In this example, the reader executes four ID tries per antenna. However, if it sees two
ID tries in a row without any new tags, then the reader switches to the next antenna.
The reader resets the counter for the next antenna.

The reader performs these steps:
Read 1 new tag.

Read no new tags.

Read no new tags.

Switch to the next antenna.
Read 2 new tags.

Read 4 new tags.

Read no new tags.

0 N OO 1 A W N a

Read 1 new tag.
9 Switch back to antenna one.
10 Read no new tags.
11 Read 2 tags.
The total number of ID tries =2 * 2 = 4.

Setting INITTRIES

When you choose the value for INITTRIES, you need to decide if you want
INITTRIES to be 1 or greater than 1:

* The previous examples assume that INITTRIES is set to 1.

* This section describes how the reader operates when INITTRIES is greater than
1. In this case, the INITTRIES attribute tells the reader how many resets
(initialize) commands should be sent. However, this does not mean how many
are sent at one time. INITTRIES actually works as a multiplier of IDTRIES and
ANTTRIES.

Suppose these attributes are set:

e INITTRIES=3

« IDTRIES=2
« ANTTTRIES=6
e ANTS=1.2

The reader performs these steps:

1 Turn on antenna one.

Basic Reader Interface Programmer’s Reference Manual 89

Chapter 4 — BRI Commands

&

Send an initialize command on antenna 1 and 2.
Read no new tags.

Read 1 new tag.

Switch to the next antenna.

Read no tags.

Read no tags.

Send an initialize command on antenna 1 and 2.

W 0 N v i1 A W N

Read 3 new tags.

-
o

Read 2 new tags.

-t
-

Switch to the next antenna.

-
N

Read 1 tag.

-t
w

Read 2 tags.

-
F

Send an initialize command on antenna 1 and 2.

-
Ul

Read 2 new tags.

-
an

Read 2 new tags.

=y
~N

Switch to the next antenna.

-
-]

Read no tags.
19 Read no tags.
The total number of ID tries = 3 * (2 * 2) = 12.
You can see that INITTRIES worked to multiply the total number of cycles the
reader ran. This is the case no matter how you set IDTRIES and ANTTRIES.

Note: You cannot set INITTRIES, IDTRIES, or ANTTRIES to zero.

Understanding the [LITERAL] Parameter

90

Command:

Response:

[LITERAL] parameters can improve the readability of the data returned from a BRI

command. A [LITERAL] parameter is a quoted text string that can be placed

anywhere on a BRI command line. There is no limit to the number of [LITERAL]
parameters that you can specify. The maximum length of a [LITERAL] parameter is

255 characters.
This example demonstrates various uses of [LITERAL| parameters:

READ “PRICE $” ,INT(18,2,) “QUANTITY” INT(20,2), “SIZE”,
STRING(22,8)<CRLF>

PRICE $25 QUANTITY 10 SIZE “LARGE”<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Reading and Writing STRING Fields

When writing a string field to a tag, the length field specifies the total length of the
string data. When data is returned from STRING fields, the data returned contains
information only up to the length specified in the command.

The following five examples show the details associated with reading and writing
STRING fields.

Consider the first example:

Suppose you want to define STRING data on a tag starting at location 18 for a
length of 20 bytes. With a field of this length, the string can store 20 characters. This
WRITE command would write the entire field:

WRITE STR(18,20)="abcdefhgijklmnopgrst” <CRLF>

The string is 20 characters long. This would fill the entire defined field in the tag.
Consider the second example:

If the data in a STR(address,length) data type is specified as follows, the characters
abcde are written to locations 18 through 22. The characters £g are not written:

WRITE STR(18,5)="abcdefg”<CRLF>

Consider the third example:

This READ command reads the entire string field of the first example. The
command stops reading after 20 characters.

READ STR(18,20)<CRLF>

“abcdefghijklmnopgrst” <CRLF>

OK><CRLF>

Consider the fourth example:

This READ command reads 25 characters from tag memory. The WRITE command
in the first example wrote 20 ASCII characters up to location 37. The characters
from 38 to 42 were not changed by that WRITE command. They may not represent
printable ASCII. Characters that are not printable ASCII are returned as hex
characters in the form \xnn. Suppose the characters on the tag are a period (.)
followed by two carriage-return and line-feed characters. For example:

READ STR(18,25)<CRLF>
“abecdefghijklmnopgrst.\x0d\x0a\x0d\x0a” <CRLF>

OK><CRLF>

Consider the fifth example:

Smaller sections of this same data could be read out with this command:

READ STR(18,5)<CRLF>
“abcde” <CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 91

Chapter 4 — BRI Commands

Understanding ACCESS and KILL Passwords

EPC Global Gen 2 tags contain a security feature that is controlled by the password
values stored in memory bank 0. These ACCESS and KILL passwords that are
contained in the EPC Global Gen 2 tags are 4 bytes in length:

* ACCESS passwords control how data is read or written to EPC Global Gen 2
tags. The ACCESS password is stored in the second 4 bytes of memory bank 0
and can be specified using the syntax HEX (0:4, 4) .

* KILL passwords are used by the KILLTAG command to kill an EPC Global Gen 2
tag. The KILL password is stored in the first 4 bytes of memory bank 0 and can
be specified using the syntax HEX (0:0, 4).

By default, the passwords in memory bank 0 are set to 0. When the password values
contain a 0, the tags can be read and written by the PROTECT command. The
READ, WRITE, PROTECT, and KILLTAG commands each have an option for
specifying a password.

Once the ACCESS and KILL passwords have been set in a tag, the ability to read,

write, protect, and kill tags requires the use of a password to complete the operation.

For ACCESS passwords, there are different rules in regards to read and write
operations once the access password has been set.

Memory Bank 3 User Memory

For memory bank 3, if a non-zero ACCESS password has been written to a tag, you
must specify an ACCESS password in the WRITE or PROTECT command in order
to write or protect memory bank 3. If the correct password is not given, the
commands will return a PVERR indicating that an invalid password has been given.
The READ command can be performed without inputting a password.

The example below illustrates writing the ACCESS password first, then performing
the READ, WRITE, and PROTECT operations.

WRITE HEX(0:4,4)=H11223344<CRLF>

WROK<CRLF>

OK>

READ HEX(3:0,4) PASSWORD=H11223344<CRLF>
H99001122<CRLF>
OK><CRLF>

READ HEX(3:0,4) PASSWORD=H55667788<CRLF>
PVERR<CRLF>
OK><CRLF>

WRITE HEX(3:0,4)=HAABBCCDD PASSWORD=H11223344<CRLF>

WROK><CRLF>
OK><CRLF>

92 Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

WRITE HEX (3:0,4)=HAABBCCDD PASSWORD=H55667788<CRLF>
PVERR<CRLF>
OK><CRLF>

PROTECT OFF HEX(3:09,4) PASSWORD=H11223344<CRLF>
LCKOK<CRLF>
OK>

PROTECT ON HEX(3:0,4) PASSWORD=H55667788<CRLF>
PVERR<CRLF>
OK><CRLF>

Memory Bank 2 TID Memory

For memory bank 2, if a non-zero ACCESS password has been written to a tag, you
must specify an ACCESS password in the READ, WRITE, or PROTECT command in
order to read, write, or protect memory bank 3. If the correct password is not given,
the commands will return a PVERR indicating that an invalid password has been
given.

The example below illustrates writing the ACCESS password first, then performing
the READ, WRITE, and PROTECT operations.

WRITE HEX(0:4,4)=H11223344<CRLF>

WROK<CRLF>

OK>

READ TAGID PASSWORD=H11223344<CRLF>
H66778899<CRLF>
OK><CRLF>

READ TAGID PASSWORD=H55667788<CRLF>
PVERR<CRLF>
OK><CRLF>

WRITE TAGID=HAABBCCDD PASSWORD=H11223344<CRLF>
WROK<CRLF >
OK><CRLF>

WRITE TAGID=HAABBCCDD PASSWORD=H55667788<CRLF>
PVERR<CRLF>

PROTECT OFF HEX(2:0,4) PASSWORD=H11223344<CRLF>

LCKOK<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 93

Chapter 4 — BRI Commands

PROTECT ON HEX(2:0,4) PASSWORD=55667788<CRLF>
PVERR<CRLF>
OK><CRLF>

Memory Bank 1 EPCID Memory

94

For memory bank 1, if a non-zero ACCESS password has been written to a tag, you
must specify an ACCESS password in the WRITE command in order to write to
memory bank 1. Note that in memory bank 1, the data can always be read with a
correct ACCESS password or without an ACCESS password. If the correct password
is not given, the commands will return a PVERR indicating that an invalid password
has been given.

The example below illustrates writing the ACCESS password first, then performing
the READ, WRITE, and PROTECT operations.

WRITE HEX(0:4,4)=H11223344<CRLF>

WROK<CRLF>

OK><CRLF>

READ EPCID<CRLF>
H112233445566778899001122<CRLF>
OK><CRLF>

READ EPCID PASSWORD=H11223344<CRLF>
H112233445566778899001122<CRLF>
OK><CRLF>

WRITE EPCID=H00112234455667788990011 PASSWORD=H11223344
WROK<CRLF>
OK><CRLF>

WRITE EPCID=H001122334455667788990011 PASSWORD=H55667788<CRLF>
PVER<CRLF>
OK><CRLF>

PROTECT OFF HEX(1:4,12) PASSWORD=H11223344<CRLF>
LCKOK<CRLF>
OK><CRLF>

PROTECT ON HEX(1:4,12) PASSWORD=H55667788<CRLF>

PVERR<CRLF>
OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Memory Bank 0 PASSWORD Memory

If a non-zero ACCESS password has been written to an EPC global Gen 2 tag, the
ACCESS password must be specified in the WRITE command in order to write to
memory bank 0.

In memory bank 0, two unique passwords exist, the ACCESS and the KILL
password. Even though they are located on the same memory bank, these passwords
are treated independently. If the correct password is not supplied, the READ, RITE,
and PROTECT commands will recurn PVERR indicated that an invalid password
has been supplied.

If you are using the PROTECT ON PERMANENT option, both the ACCESS and
KILL passwords can no longer be overwritten using the WRITE command as in the
other memory banks. Also, the password data can no longer be read using the READ
command. Permanently locking a password allows it to be completely hidden, and
any attempts to use a WHERE clause to select tags based on stored information in
memory bank 0 will be unsuccessful. This stops a user from finding out either byte
by byte or bit by bit what the stored passwords contained.

The example below shows writing the ACCESS password first, then performing the
READ, WRITE, and PROTECT operations.

WRITE HEX(0:4,4)=H11223344<CRLF>

WROK<CRLF>

OK><CRLF>

READ HEX(0:4,4) PASSWORD=H11223344<CRLF>
H11223344<CRLF>
OK><CRLF>

READ HEX(0:4,4) PASSWORD=H55667788<CRLF>
PVER<CRLF>
OK><CRLF>

WRITE HEX(0:4,4)=H11223344 PASSWORD=H11223344<CRLF>
WROK><CRLF>
OK><CRLF>

WRITE HEX(0:4,4)=H11223344 PASSWORD=H55667788<CRLF>
PVERR<CRLF>

OK><CRLF>

PROTECT OFF HEX(0:4,4) PASSWORD=H11223344<CRLF>
PVERR<CRLF>

OK><CRLF>

PROTECT ON PERMANENT HEX (04:4,4) PASSWORD=H11223344<CRLF>

Basic Reader Interface Programmer’s Reference Manual 95

Chapter 4 — BRI Commands

LCKOK<CRLF>
OK><CRLF>

READ HEX (04:4,4)<CRLF>
PVERR<CRLF>
OK><CRLF>

WRITE HEX(0:4,4)=H11223344 PASSWORD=H11223344<CRLF>
PVERR<CRLF>
OK><CRLF>

Understanding Error and Success Responses

There are two types of errors:
e Command-level errors, which indicate that the entire command failed.
* Field-level errors, which indicate that only part of the command failed.

The following table describes the reader error and success responses.

Reader Error and Success Responses

Command-Level or

Response Description Field-Level Error?
ADERR Response to a WRITE command for an EPCglobal Class 1 Gen 2 tag Field-level

when you did not write an even-length value to an even-byte

addresses.
CKERR Response to a command with an invalid checksum. Command-level

If you receive this response in a BRI application that communicates
with the reader over a TCP connection, this indicates a command
transport error (even though checksums are disabled).

ERASEERR Response to an erase tag field command that was not successful. Field-level
ERASEOK Response to an erase tag field command that was successful. Not an errot.
ERR Response to a command that was not successful. Command-level
MERR Response to any command that causes an “out of memory” error. Command-level
NOTAG Response to a READ or WRITE command when no tags are found = Notan error
and when the NOTAGRPT attribute is enabled.
PVERR Response when memory is locked. Field-level
PWERR Response when the WRITE command failed because the tag had low Field-level
power.
RDERR Response to a read tag field command that was not successful. Field-level
WRERR Response to a write tag field command that was not successful. Field-level
WROK Response to a write tag field command that was successful. Not an error

96 Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Understanding EVENT Messages

A reader may emit up to seven types of event messages:

Syntax:

TRIGGER event messages are the result of input state changes from general
purpose input devices, see “TRIGGER” on page 59 for more information.

TRIGGERACTION event messages are shown when a trigger executes an action
macro. Any output generated by the macro will be sent to the BRI client in the
form of a trigger action event. Note that if an action generates a response
completion message OK> then it will also be included in the trigger action events.

RADIO event messages are generated internally by the reader and provide
information to the user about the state of the reader. These events are related to
regulatory compliance issues imposed by the country where the reader is being
used. When a reader’s duty cycle time has expired, it will not perform tag
operations until the duty cycle time is available again.

TAG event messages are detected as a result of READ commands. The
<TYPE_SPECIFIC_PART?> is identical to the response defined by the read
command.

BATTERY event messages are generated internally by the platform hardware and
provide information about the state of the battery associated with the platform.
These events are generated when the battery status changes or when the
Bluetooth or USB connection on the IP30 is established.

“Charged” means that there is more than 80% battery life remaining,
“operational” means that there is between 80% to 20% battery life remaining, and
“low” means that there is less than 20% battery life remaining.

THERMAL event messages are generated internally by the reader and provide
information to the user about the state of operating temperature associated with
the reader. When the reader is in an over temperature state, it will stop operating
on tags. Once the reader has returned to a normal operating temperature, tag
operations will resume normal operation.

RESET event messages are generated internally by the reader and provide
information to the user when the reader has been reset, which is typically caused
by the RESET command being executed.

All event messages use the following format:

EVT:<TYPE> <TYPE SPECIFIC PART>

The <TYPE SPECIFIC PART> depends on the <TYPE>:
EVT:TRIGGER <NAME> <EVENT> <DATA>
EVT:TRIGGERACTION “TRIGGER NAME” MACRO OUTPUT
EVT:RADIO DUTY CYCLE TIMELEFT <TIME>

EVT:TAG <TAG DATA>

EVT:BATTERY LOW|OPERATIONAL |CHARGED
EVT:THERMAL OVERTEMP | NORMAL <TEMPERATURE>
EVT:RESET

EVT: BRISERVICE NOSESSIONS

EVT: ANTENNA FAULT <ANTENNA NUMBER>

Basic Reader Interface Programmer’s Reference Manual 97

Chapter 4 — BRI Commands

98

Fields:

Examples:

<TYPE> = This field may be TRIGGER, TRIGGERACTION, RADIO, TAG,
BATTERY, THERMAL, or RESET.

<NAME> = This field specifies the name associated with the event, like the name of
the trigger.

<EVENT> = This field identifies the event that occurred.

<DATA> = This field contains data, like the state of the GP inputs on the reader.
Example 1:

The following is an example of a TRIGGER event message:
EVT:TRIGGER ExampleTRIGGER GPIO 15<CRLF>

Example 2:

The following is an example of a TRIGGERACTION event message:
EVT:TRIGGERACTION “GPIO_ 1" H6861681<CRLF>
EVT:TRIGGERACTION “GPIO 1" OK><CRLF>

Example 3:

The following is an example of a RADIO event message:

EVT:RADIO DUTY CYCLE TIMELEFT xXxXX<CRLF>

The event message above is generated when the reader must turn off the radio in
order to comply with country regulations. The response is type RADIO with the
name DUTY_CYCLE. The event was TIMELEFT and the xxxis a decimal value in
seconds representing the remaining that the radio can be turned ON and actively
looking for tags.

Example 4:

The following is an example of the TAG event message from “READ TAGID
REPORT=EVENT”:

EVT:TAG H112210101122334411221122<CRLF>
Example 5:

The following is an example of the TAG event message from “READ ANT EPCID
COUNT TIME”:

EVT:TAG 3 H112210101122334411221122 1 34537<CRLF>
Example 6:

The event below is generated from the BATTERY event message when low level
battery capacity has been detected:

EVT:BATTERY LOW<CRLF>
Example 7:

The following is an example of the THERMAL event message when an over-
temperature condition in the reader has been detected:

EVT: THERMAL OVERTEMP <degrees>
Example 8:

The following is an example of the ANTENNA FAULT event message that is
generated for every READ, WRITE, etc. operation that is executed on a faulty,
disconnected, or mismatched antenna:

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

EVT: ANTENNA FAULT 2<CRLF>

Understanding the Format of BRI Command Responses

Command:

Response:

Command:

Response:

Command:

Response:

Command:

Response:

Command:

Response:

Command:

Response:

This section illustrates the variety of command responses available. All BRI
command responses are formatted in the same order that the BRI command is
presented to the reader. You can include information from multiple tags in the field,
and you can use [LITERAL] parameters to make the responses easier to read.
READ TAGID, ANTENNA, TIMESTAMP<CRLF>

H1234561234561234 1 12345<CRLF>

OK><CRLF>

READ ANTENNA TAGID<CRLF>

2 H1234512345123451<CRLF>

OK><CRLF>

READ “TAG:"”TAGID “TIME="TIMESTAMP<CRLF>
TAG:H1234567890ABCDEF TIME=12345<CRLF>

OK><CRLF>

READ TAGID<CRLF>

This READ command finds four tags in the field.

HABCDEF1111111111<CRLF>
HABCDEF2222222222<CRLF>
HABCDEF3333333333<CRLF>
HABCDEF4444444444<CRLF>
OK><CRLF>

READ STR(18,5) <CRLF>

This command reads a string from the tag and finds three tags in the field.

“HELLO"” <CRLF>

“CLOSE” <CRLF>

“FIELD” <CRLF>

OK><CRLF>

READ “PRICE ”, INT(28,2), “QUANTITY ”, INT(30,2)<CRLF>

This READ command reads two numeric fields from a tag and finds three tags in
the field. This command also shows how to make the response more readable using
[LITERAL] parameters PRICE and QUANTITY. One tag also returns a read error for
the second field.

PRICE 89 QUANTITY 100<CRLF>

PRICE 139 QUANTITY 12<CRLF>

PRICE 39 QUANTITY RDERR<CRLF>

OK><CRLF>

Basic Reader Interface Programmer’s Reference Manual 99

Chapter 4 — BRI Commands

Creating and Using BRI Macros

Macros provide a shorthand method for defining and sending complex BRI
commands without sending all of the command line parameters each time the
command is used. Macros let you create shorter, more convenient commands.

You can send two types of macros:

* A command macro contains a BRI command or sequence of BRI commands to
be executed.

* A parameter macro contains a list of parameters to be used when executing a BRI
command.

Your macro can contain any BRI commands, command line parameters, and

reserved keywords.
Macros are stored in the non-volatile memory of the reader.

The following sections explain how to create, invoke, list, view, and delete macros. If
you prefer looking at command descriptions:

* see “SET” on page 57. The SET command lets you create, list, and delete
macros.

* see “PRINT” on page 48. The PRINT command lets you view the contents of a
macro.

Creating a Command Macro

You create a command macro, which contains both a command and all its
parameters, with the SET command. For example:

SET MYREADMACRO="READ TAGID WHERE INT (20,2)=2000"<CRLF>

Follow these guidelines when naming a macro:

* The name is an alphanumeric string that can be as short as one character; there is
no length limit for the name.

* You cannot use BRI reserved keywords as macro names. For a list of reserved
keywords, see “Reserved Keywords” on page 17.

* The first character must be a letter (A to Z or a to z).
* The first character cannot be a number (0 to 9).

If the macro contains [LITERAL] parameters, which must be enclosed in double
quotes, you must use the \ character to escape the embedded double quotes.

To execute a command macro, see the next section, “Executing a Command Macro.”

Executing a Command Macro

100

You execute a command macro by typing the name of the macro preceded by a $.
Suppose a macro MYREADMACRO was defined, you invoke it with this command:

SMYREADMACRO

The macro MYREADMACRO is expanded by the BRI and replaced with the text
string stored in the macro MYREADMACRO.

Basic Reader Interface Programmer’s Reference Manual

Chapter 4 — BRI Commands

Creating a Parameter Macro

Suppose these are the parameters for a READ command used several times in your

application:
READ “TAG ID:” ,HEX(0,8), “NAME:”, STRING(18,20) WHERE INT(18)=1
AND INT(22) != 100 AND STRING(30)="ADDRESS”

You can store all those parameters in a parameter macro called MYREADPARAMS
with this command:

SET MYREADPARAMS =“\“"TAG ID:\”, HEX(0,8),
\"NAME:\"”,STRING(18,20) WHERE INT(18)=1 AND INT(22) != 100 AND
STRING (30)=\"ADDRESS\" "

Note how the \ character is used to escape the embedded double quotes for the
[LITERAL] parameters.

To execute a READ command using this parameter macro, see the next section,
“Executing a Command With a Parameter Macro.”

Executing a Command With a Parameter Macro

You execute a command with a parameter macro by typing the command followed
by a $ and the macro name.

For example, you can execute the READ command using the parameters stored in
MYREADPARAMS with this command:

READ S$SMYREADPARAMS

Listing All Macros Stored in Memory
Macros are stored in the non-volatile memory of the reader. To display a list of all
the macros currently stored in memory, use the SET command with no parameters:
SET<CRLF>
The BRI returns a list like this one:

MYREADMACRO=READ TAGID WHERE INT (20,2)=2000<CRLF>

MYREADPARAMS=\“TAG ID:\”,HEX(0,8), \“NAME:\”,STRING (18,20) WHERE
INT (18)=1 AND INT(22) != 100 AND STRING(30)=\"ADDRESS\”<CRLF>

OK><CRLF>

Displaying the Contents of a Macro

To display the contents of a macro, use the PRINT command as follows:
PRINT $<NAME><CRLF>

where <NAME> is the name of the macro.

For example, use this command to view the contents of the MYREADMACRO
macro:

PRINT S$MYREADMACRO

The data is returned in a format that can be used in a subsequent BRI command.

Basic Reader Interface Programmer’s Reference Manual 101

Chapter 4 — BRI Commands

Deleting a Macro

To delete a macro from memory, use the SET command with no data after the
macro name as follows:

SET <NAME>=<CRLF>

where <NAME> is the name of the macro.

For example, to delete MYREADMACRO, use this command:

SET MYREADMACRO=<CRLF>

102 Basic Reader Interface Programmer’s Reference Manual

5

Reader-Specific Platform
Specifications

This chapter lists the reader-specific platform specifications that you should
be aware of. This chapter contains these sections:

Reader-Specific Platform Specifications
ITRFxxx01 Readers

Readers That Contain the IM5 Module
Readers That Contain the IM4 Module

103

Chapter 5 — Reader-Specific Platform Specifications

Reader-Specific Platform Specifications

If a reader deviates from the BRI specification, it is noted in this chapter. The
differences can include enhanced or reduced feature sets. This chapter outlines the
reader-specific implementations for these readers:

* ITRFxxx01 readers
* Readers that contain the IMS module
* Readers that contain the IM4 module with software version 5.xx (or later)

For a complete list of readers that implement all or part of the BRI, see your
Intermec representative.

ITRFxxx01 Readers

This section describes how ITRFxxx01 readers deviate from the BRI specification.
The ITRFxxx01 name is used to indicate both the ITRF41501 reader and the
ITRF24501 reader.

BRI Disabled by Default

By default, the BRI is disabled on the ITRFxxx01 reader. You must use a separate
utility to enable the BRI in the reader.

Features Not Implemented

Attribute XON/XOFF is not implemented fully. The reader will stop and start data
transmission in response to XON/XOFF commands. When the attribute is enabled,
the reader will never send XON/XOFF characters to the host.

Buffer Sizes

Be aware of these buffer size limits on the ITRFxxx01 reader:

* Maximum command line buffer size is 255 characters including expanded
macros.

* Maximum macro buffer size is 255 characters.

* Maximum macro name size is 32 characters.

* Maximum [LITERAL] lengths are 255 characters.

* Maximum length for HEX and STRING data type definitions are 104 characters.

* Maximum memory storage for commands, fields, literals and macros is 4092
bytes.

104 Basic Reader Interface Programmer’s Reference Manual

Chapter 5 — Reader-Specific Platform Specifications

Memory Management

The ITRFxxx01 reader has limited memory available. The maximum available
memory is 4092 bytes. This memory must be shared with macros, commands,
literals and BRI response functions. Flexibility has been provided to allow the
application to efficiently use the limited memory resources.

Intermec recommends that no more than 3000 bytes of memory be used for macro
storage. If you follow this recommendation, the BRI will operate correctly and have
sufficient memory resources for all possible command lines. If memory resources
become too low in the BRI, the responses may not return all the data specified in a
BRI command.

Error Responses

The MERR error is reported when there is not enough memory to store macros or
process commands. The ITRFxxx01 reader has a total 4092 bytes of available RAM.
Since all command processing and macro storage is kept in this limited RAM space,
it is possible that a command will fail with this MERR for no apparent reason.

If you receive the MERR error, you should delete some macros to increase the
amount of available memory. For help, see “Listing All Macros Stored in
Memory” on page 101 and “Deleting a Macro” on page 102.

Antennas

The ITRFxxx01 reader has four antennas that can be controlled with the ANTS
attribute.

GPIO

The ITRFxxx01 reader has four general purpose input ports and four general
purpose output ports.

The WRITEGPI command requires you to keep track of the current status of the
output lines in the application software. For help, see “WRITEGPO” on page 68.

Reader Attributes

In Japan, the following attributes have unique defaults:

* TTY=ONis set to TTY=OFF for all Japan country codes.

* ECHO=ON is set to ECHO=OFTF for all Japan country codes.

* IDREPORT=ON is set to IDREPORT=OFF for all Japan country codes.

BRI Commands
The following BRI commands are not implemented in the ITRFxxx01 BRI:
» TRIGGER
* TRIGGERREADY
« TRIGGERQUEUE

Basic Reader Interface Programmer’s Reference Manual 105

Chapter 5 — Reader-Specific Platform Specifications

In this example, the WHERE expression is evaluated exactly as described in “Using
AND/OR Logic in Data Conditions” on page 30:

READ INT(18) WHERE INT(19)=1 OR INT(20)=1 AND INT(21)=3

However, if you change the order of the expression, the resulting tags selected are
evaluated as if parentheses were used:

READ INT(18) WHERE INT(20)=1 AND INT(21)=3 OR INT(19)=1

Since an OR follows an AND, the expression is evaluated as follows using
parentheses:

READ INT(18) WHERE (INT(20)=1 AND INT(21)) OR INT(19)=1

Implied parentheses are applied any time an OR keyword is followed by an AND
keyword.

EVENT Responses

The ITRFxxx01 reader does not support the event responses, as described in
“Understanding Error and Success Responses” on page 96.

Phillips V1.19 TAG Type

The ITRFxxx01 reader does not support the Phillips V1.19 tag type, as described in
“TAGTYPE” on page 84.

Readers That Contain the IM5 Module

Buffer Sizes

Antennas

106

RFID readers that contains the IM5 module deviate from the BRI specification as
described in this section.

For a complete list of RFID readers that contain the IMS module, see your Intermec
representative.

Be aware of these buffer size limits on readers that contain the IMS module and
architecture older than IF61 v2.00:

* Maximum command line buffer size is 255 characters including expanded
macros.

* Maximum macro buffer size is 255 characters.

* Maximum macro name size is 32 characters.

* Maximum [LITERAL] lengths are 255 characters.

* Maximum length for HEX and STRING data type definitions are 104 characters.

Readers that contain the IMS module have four antennas that can be controlled
with the ANTS attribute.

Basic Reader Interface Programmer’s Reference Manual

Chapter 5 — Reader-Specific Platform Specifications

GPIO

Readers that contain the IMS module have four general purpose input ports and
four general purpose output ports. The WRITEGPI command requires you to keep
track of the current status of the output lines in the application software. For help,
see “WRITEGPO” on page 68.

Reader Attributes

The default for the attribute INITTRIES is 1. Intermec recommends that you leave
the INITRIES value set to 1 for readers that contain the IMS module. For more
information, see “INITTRIES” on page 81.

FACDFLT Command

The FACDFLT command restores the reader to its factory default configuration, as
described in “Resetting the Reader to the Factory Default Configuration” on
page 3. However, the reader remains in BRI mode of operation.

Readers That Contain the IM4 Module

RFID readers that contains the IM4 module with software version 5.xx (and higher)
support the BRI. These readers deviate from the BRI specification as described in
this section.

For a complete list of RFID readers that contain the IM4 module, see your Intermec
representative.

WRITEGPI Command

The WRITEGPI command sets the state of all the GP output lines available on a
reader. For more information, see “WRITEGPO” on page 68.

Readers that contain the IM4 module have two GP output lines, which you can set
to 0 (OFF) or 1 (ON). The WRITEGPI command can include a value from O to 3, as
shown in the next table.

Choosing a Value for WRITEGPI

Which GP Output Lines Are Turned ON?

Value 1 2

0

1 ON

2 ON
3 ON ON

Basic Reader Interface Programmer’s Reference Manual 107

Chapter 5 — Reader-Specific Platform Specifications

READGPI Command

The READGPI command returns a value that indicates the current state of all the
GP input lines available on a reader. For more information, see “READGPI” on
page 5S.

Readers that contain the IM4 module have two GP input lines, which are numbered
from 1 to 2. Each GP input line can be 0 (OFF) or 1 (ON).

Interpreting the Value Returned by READGPI

Which GP Input Lines Are Turned ON?

Value 1 2

0

1 ON

2 ON
3 ON ON

The response is formatted as follows for a reader that has two GP input lines,
indicating that all input are ON:

3<CRLF>

OK><CRLF>

TRIGGER Command

Antennas

108

The TRIGGER command creates, deletes, and displays trigger events that are based
on the state of the GP inputs supported by the reader. For more information, see
“TRIGGER” on page 59.

For readers that contain the IM4 module, the GPIO mask value can only contain
values 0, 1, 2, or 3.

Readers that contain the IM4 module have one antenna, and affects these
programming elements:

* ANTENNA data type definition
* ANTENNA or ANTS attribute

ANTENNA Data Type Definition

The ANTENNA data type definition indicates which antenna primarily located the
tag. ANTENNA is also a read-only value reported during the execution of READ and
WRITE commands. For more information, see “ANTENNA” on page 22.

For readers that contain the IM4 module, the ANTENNA data type definition
always returns a value of 1.

Basic Reader Interface Programmer’s Reference Manual

Chapter 5 — Reader-Specific Platform Specifications

ANTENNAS or ANTS Attribute

The ANTENNA or ANTS attribute sets the antenna sequence to be used during
READ and WRITE commands. For more information, see “ANTENNAS or ANTS”

on page 75.

For readers that contain the IM4 module, you can specify the value 1 once in this
attributes command. For example:

ATTRIB ANTS=1<CRLF>

Sensing an Over-Temperature Condition

When the application requests a tag operation (such as identify, read, or write) and
the temperature of the IM4 reader is within normal limits, the IM4 returns normal
status and data, if found.

If the temperature is out of range (approximately 70° Celsius or 158° Fahrenheit at
the RF power amplifier), the IM4 returns an over-temperature event to indicate this
condition.

The IM4 returns events related to the over-temperature condition in the following
format:

EVT:THERMAL OVERTEMP xxC<CRLF>

EVT:THERMAL NORMAL xxC<CRLF>

where xx is the current temperature in Celsius.

While the IM4 is in an over-temperature condition:

* The reader will return a NOTAG response.

* Only the tag-reading functions are inhibited. All other functions are possible.

* The time required for the IM4 to return to a normal temperature depends on the
ability of the environment to dissipate the heat.

When the IM4 returns to a normal operating temperature, it returns normal status
in response to commands.

environmental variations exist, it is impossible to predict exactly when the IM4 may
go into thermal-protection mode. The IM4 was designed for up to 1 Watt of
continuous power at 100% duty cycle, and care has been taken to rid the IM4 of
excess heat, ensuring that users rarely see this scenario.

§ Note: The IM4 has a built-in thermal-control self-protection circuit. Because many

Basic Reader Interface Programmer’s Reference Manual 109

Chapter 5 — Reader-Specific Platform Specifications

110 Basic Reader Interface Programmer’s Reference Manual

Index

111

Index

112

A
ACCESS and KILL passwords
ACCESS password, description, 92
KILL password, description, 92
Memory Bank 0 PASSWORD
Memory, 95
Memory Bank 2 TID Memory, 93
Memory Bank 3 User Memory, 92,
94
ADERR response, description, 96
AFI data field, 22
AND keyword, 31
AND logic, grouping expressions, 32
AND/OR logic
keywords, 31
operators, 30
ANTENNA data field, 22
ANTENNA data type definition, 108
ANTENNAS or ANTS attribute, 75,
109
ANTTIMEOUT attribute, 76
ANTTRIES attribute, 76
archictecture of BRI, 2
asynchronous event handler, 12
asynchronous event messages, 11
ATTRIBUTE command, 34
attributes
ANTENNAS or ANTS, 75
ANTTIMEOUT, 76
ANTTRIES, 76
BAUD, 76
BTPWROFF, 76
CHKSUM, 77
DENSEREADERMODE, 77
ECHO, 77
FIELDSEP, 78
FIELDSTRENGTH, 78
IDREPORT, 79
IDTIMEOUT, 80
IDTRIES, 80
INITIALQ, 80
INITTRIES, 81
LBTCHANNEL, 81
LBTSCANENABLE, 81
LOCKTRIES, 82
NOTAGRPT, 82
RDTRIES, 82
RPTTIMEOUT, 82
SCHEDULEOPT, 83
SELTRIES, 83
SESSION, 84
TAGTYPE, 84
TIMEOUTMODE, 85
TTY, 85
UNSELTRIES, 86

WRTRIES, 86
XONXOFF, 86

attributes list, reserved keyword
list, 20

Basic Reader Interface
access methods, 2
conventions used, 5
default configuration, 3
general features, 2
Hyperterminal, using to connect, 2
overview, 2
telnet, using to connect, 2
usage scenarios, 2
version, identifying, 5
BATTERY event messages, 97
BAUD attribute, 76
binary constants, 22
BIT data field, 23
BRI command list, 17
BRI command processor thread, 13
BRI command response types
command error response, 11
normal command response, 11
BRI command responses,
understanding, 99
BRI command, message type, 11
BRI commands
reserved keyword list, 17
BRI event handler, 14
BRI Extensions
Fujitsu tags
FJBURSTERASE, 70
FJBURSTWRITE, 71
FJCHGBLOCKGROUPPWD, 7
1
FJCHGBLOCKLOCK, 72
FJCHGWORDLOCK, 72
FJREADBLOCKLOCK, 72
IMPIN] tags
READ IMPINJQT, 73
WRITE IMPINJQT, 73
NXP tags
NXPALARM, 69
NXPCONFIG, 70
NXPEAS, 70
NXPREADPROTECT, 70
BRI logic interface, description, 16
BRI message layer, programming, 11
BRI asynchronous event
handler, 12
BRI command processor, 12
BRI message types, 11
asynchronous event
messages, 11
BRI command, 11

Basic Reader Interface Programmer’s Reference Manual

Index

BRI Command Response, 11 KILLTAG, 46
response handler, 12 LOCK, 46
BRI transport layer, programming, 12 PING, 47
transport initialization, 13 PLATDFLT, 48
transport operation, 12 PRINT, 48
BRI. See Basic Reader Interface PROTECT, 48
BRISERVICE evencf rrslesss;ges, 97 READ, 50
BRIVER command, 3,
BTPWROFF attribute, 76 Eggg AGTITI?G’ 53,108
C RESET, 57
CAPABILITIES command, 39 SET, 57
CHKSUM attribute, 77 SWVER, 59
CKERR response, description, 96 TRIGGER, 59, 108
command error response, TRIGGERCANCEL command, 62
description, 11 TRIGGERQUEUE, 62
command macro TRIGGERREADY, 62

description, 100

1 TRIGGERWAIT, 63

example, 100 VERSION, 64

executing, 100 WRITE 6’4

guidelines, 100 WRITEGPIO, 68, 107

macros, deleting, 102 >
constants

macros, displaying, 101
stored macros, listing macro, 101
command parameters list, 18
command parameters, reserved
keyword list, 18

command processor, 12

binary constants, 22
hex constants, 22
integerconstants, 22
octal constants, 22
string constants, 22

command processor thread, 13 conventions used for BRI
command response types commands, 34
command error response, 11 conventions used in manual, §
normal command response, 11 COUNT data field, 23
command responses, D
understanding, 99 data conditions
command/response structure, BRI AND/OR logic
logic interface, 16 grouping expressions, 32
command-level errors operators, 30
CKERR, 96 using, 30
description, 96 defined, 28
ERR, 96 example, 30
MERR, 96 limitations, 28
commands multi-protocol condition usage, 32
ATTRIBUTE, 34 native tag selector logic
BRIVER, 5, 38 operators, 29
CAPABILITIES, 39 using, 29
conventions used, 34 data field definitions
DIAGNOSTICS, 42 AFI data field, 22
ERASE, 43 ANTENNA data field, 22
FACDFLT, 44,107 BIT data field, 23
FACDLFT commands, 3 COUNT data field, 23
HELP, 44 description, 22
HWCC, 44 EPCID data field, 23
HWID, 44 HEX data field, 24
HWPROD, 44 INT data field, 25
HWREGION, 45 ISOUII data field, 26
HWVER, 46 RSSI data field, 27

Basic Reader Interface Programmer’s Reference Manual 113

Index

114

STRING data field, 27

tag types supported, 30

TAGTYPE data field, 28

TIME data field, 28
default configuration, values, 3
defaults used in manual, 5
DENSEREADERMODE attribute, 77
DIAGNOSTICS command, 42
documentation, third party

documents, xii

E
ECHO attribute, 77
EPC Global Gen 2 tag, ACCESS and
KILL passwords, 92
EPCglobal Class 1 Gen 2 tag
memory bank parameter
description, 25
EPCID data field, 23
ERASE command, 43
ERASEERR response, description, 96
ERASEOK response, description, 96
ERR response, description, 96
error and success responses, 96
ADERR, 96
CKERR, 96
ERASEERR, 96
ERASEOK, 96
ERR, 96
MER, 96
NOTAG, 96
PVERR, 96
PWERR, 96
RDERR, 96
WRERR, 96
WROK, 96
Ethernet, accessing with, 2
event handler thread, 14
event messages, 97
BATTERY, 97
BRISERVICE, 97
examples, 98
formats, 97
NOSESSIONS, 97
RADIO, 97
RESET, 97
TAG, 97
THERMAL, 97
TRIGGER, 97
TRIGGERACTION, 97
understanding, 97

F

FACDFLT command, 3, 44,107

factory default configuration
resetting, 3

factory default configuration,
values, 3

field-level errors

ADERR, 96

description, 96

ERASEER, 96

PVERR, 96

PWERR, 96

RDERR, 96

WRERR, 96
FIELDSEP attribute, 78
FIELDSTRENGTH attribute, 78
FJBURSTERASE, 70
FJBURSTWRITE, 71
FJCHGBLOCKGROUPPWD, 71
FJCHGBLOCKLOCK, 72
FJCHGWORDLOCK, 72
FJREADBLOCKLOCK, 72
Fujitsu tags

FJBURSTERASE, 70

FJBURSTWRITE, 71

FJCHGBLOCKGROUPPWD, 71

FJCHGBLOCKLOCK, 72

FJCHGWORDLOCK, 72

FJREADBLOCKLOCK, 72

G

general features, Basic Reader
Interface, 2

grouping expressions, AND/OR
logic, 32

H

HELP command, 44

hex constants, 22

HEX data field, 24

HWCC command, 44

HWID command, 44

HWPROD command, 44
HWREGION command, 45
HWVER command, 46
Hyperterminal, using to connect, 2

|
IDREPORT attribute, 79
IDTIMEOUT attribute, 80
IDTRIES attribute, 80
IM4 module
ANTENNA data type
definition, 108
antennas, 108
ANTENNAS or ANTS
attribute, 109
description, 107
over-temperature condition, 109
READGPIO command, 108
TRIGGER command, 108
WRITEGPIO command, 107

Basic Reader Interface Programmer’s Reference Manual

IMS module
antennas, 106
buffer sizes, 106
description, 106
FACDFLT command, 107
GPIO, 107
reader attributes, 107
IMPIN] tags
READ IMPINJQT, 73
WRITEIMPINJQT, 73
INITIALQ attribute, 80
INITTRIES attribute, 81
input message thread, 13
INT data field, 25
integer constants, 22
ISOUII data field, 26
ITRFxx01 Readers
antennas, 105
BRI commands not
implemented, 105
buffer sizes, 104
default settings, 104
description, 104
error responses, 105
EVENT responses, 106
GPIO, 105
implemented features, 104
memory management, 105
reader attributes, 105
tag types supported, 106

K

keywords
AND, using, 31
OR, using, 31

KILL and ACCESS passwords
ACCESS password, description, 92
KILL password, description, 92
Memory Bank 0 PASSWORD

Memory, 95

Memory Bank 1 EPCID Memory, 94
Memory Bank 2 TID Memory, 93
Memory Bank 3 User Memory, 92

KILLTAG command, 46

L

LBTCHANNEL attribute, 81
LBTSCANENABLE attribute, 81
LITERAL parameter

example, 90

understanding, 90
LOCK command, 46
LOCKTRIES attribute, 82
logic interface, description, 16

M
macro

Basic Reader Interface Programmer’s Reference Manual

Index

command macro
creating, 100
description, 100
example, 100
executing, 100
guidelines, 100
macros, deleting, 102
macros, displaying, 101
stored macros, listing, 101
parameter macro
creating, 101
description, 100
example, 101
executing, 101
guidelines, 101
macros, deleting, 102
macros, displaying, 101
stored macros, listing, 101
manuals, third party documents, xii
Memory Bank 0 PASSWORD
Memory, 95
Memory Bank 2 EPCID Memory, 94
Memory Bank 2 TID Memory, 93
Memory Bank 3 User Memory, 92
memory_bank parameter
description, 25
values, 25
MER response, description, 96
message checksums
enabling, 16
examples, 16
using, 16
message layer
programming, 11
BRI asynchronous event
handler, 12
BRI command processor, 12
response handler, 12
message layer, programming
BRI message types, 11
multi-protocol condition usage, 32
multi-threaded implementation
BRI command processor thread, 13
BRI event handler, 14
input message thread, 13

native tag selector logic
using, 29
normal command response,
description, 11
NOSESSIONS event messages, 97
NOTAG response, description, 96
NOTAGRPT attribute, 82
NXP tags
NXPALARM, 69
NXPCONFIG, 70

115

Index

NXPEAS, 70 BRI asynchronous event
NXPREADPROTECT, 70 handler, 12
NXPALARM, 69 BRI command processor, 12
NXPCONFIG, 70 BRI command processor,
NXPEAS, 70 programming, 12
NXPREADPROTECT, 70 BRI message layer
o programming
octal constants, 22 message types, 11
operators BRI message layer,
AND/OR logic, 30 programming, 11
native tag selector logic, 29 response handler, 12
OR keyword, 31 RFID configuration, managing, 8
OR logic, grouping expressions, 32 RFID resource kit, using, 9
over-temperature condition, 109 software structure, 9
overview -
Basic Reader Interface, 2 RFiIrll)te;c;zgig’raélon
P managing, 8
parameter macro SmartSystems Foundation,
description, 100 using, 8
example, 101 RFID Resource Kit
executing, 101 downloading, 9
guidelines, 101 using, 9
macros, deleting, 102 RPTTIMEOUT attribute, 82
macros, displaying, 101 RSSI data field, 27
stored macros, listing, 101 S
PING command, 47 SCHEDULEOPT attribute, 83
PLATDFLT command, 48 SELTRIES attribute, 83
PRINT command, 48 serial interface, accessing with, 2
PROTECT command, 48 SESSION attribute, 84
PVERR response, description, 96 SET command, 57
PWERR response, description, 96 SmartSystems Foundation, 8
R software structure

description, 9

RADIO event messages, 97 illustrated, 10

RDERR response, description, 96

RDTRIES attribute, 82 specifications, list of, xii
READ command, 50 string constants, 22
READ IMPIN_]QT, 73 STRING data ﬁeld, 27
reader attributes STRING ﬁelds

changing, 34 description, 91

list. 20 example, 91

rea:‘ling, 36 reading and writing, 91
reader, resetting, 3 success and error responses, 96
READGPIO command, 55, 108 ADDERR, 96
REPEAT command, 56 CKERR, 96
reserved keywords ERASEERR, 96

BRI command list, 17 ERASEOK, 96

command parameters list, 18 ERR, 96

error and success response list, 21 MER, 96

reader attributes list, 20 NOTAG, 96
RESET command, 57 PVERR, 96
RESET event messages, 97 PWERR, 96
resetting, default configuration, 3 RDERR, 96
response handler, 12 WRERR, 96
response/command structure, 16 WROK, 96

RFID applications, programming, 8

116 Basic Reader Interface Programmer’s Reference Manual

success response list, 21
SWVER command, 59

T
TAG event messages, 97
tag types, data fields supported, 30
TAGTYPE attribute, 84
TAGTYPE data field, 28
TCP connection

choosing TCP port, 3

using, 3
tcp interface, accessing with, 2
telnet, using to connect, 2
THERMAL event messages, 97
third-party documents, list of, xii
TIME data field, 28
TIMEOUTMODE attribute, 85
transport initialization, 13
transport layer, programming, 12
transport operation, 12
TRIGGER command, 59, 108
TRIGGER event messages, 97
TRIGGERACTION messages, 97
TRIGGERCANCEL, 62

Basic Reader Interface Programmer’s Reference Manual

TRIGGERQUEUE command, 62
TRIGGERREADY command, 62
TRIGGERWAIT command, 63
TTY attribute, 85

u

UNSELTRIES attribute, 86
usage scenarios
Basic Reader Interface, 2

V')
VERSION command, 64

w

Wi-Fi, accessing with, 2

WRERR response, description, 96
WRITE command, 64

WRITE IMPINJQT, 73
WRITEGPIO command, 68, 107
WROK response, description, 96
WRTRIES attribute, 86

X
XONXOFF attribute, 86

Index

117

’ntermec

Worldwide Headquarters
6001 36th Avenue West
Everett, Washington 98203
U.S.A.

tel 425.348.2600
fax 425.355.9551
www.intermec.com

© 2011 Intermec Technologies
Corporation. All rights reserved.

Basic Reader Interface Programmer’s Reference Manual

P/N 937-000-009

	Before You Begin
	Chapter 1 -
Introducing the Basic Reader Interface
	Overview of the Basic Reader Interface
	What’s New?
	General Features of the BRI Architecture

	Two Typical BRI Usage Scenarios
	BRI TCP Applications
	Choosing a TCP Port for an Application Using TCP

	Resetting the Reader to the Factory Default Configuration
	Identifying the Version of BRI on Your Reader
	Conventions Used in This Manual

	Chapter 2 -
Designing Robust BRI Applications
	Before You Begin Programming
	Managing RFID Configuration
	Using the RFID Resource Kit

	Recommended Software Structure
	Programming the BRI Message Layer
	BRI Message Types
	BRI Command Processor
	BRI Asynchronous Event Handler
	Response Handler

	Programming the BRI Transport Layer
	Transport Operation
	Transport Initialization

	Multi-Threaded Implementation

	Chapter 3 -
Understanding BRI Programming Elements
	BRI Logical Interface
	Using Message Checksums
	Reserved Keywords
	Keywords Reserved for BRI Commands
	Keywords Reserved for Command Parameters
	Keywords Reserved for Reader Attributes
	Keywords Reserved for Reader Error and Success Responses

	Constants
	Data Field Definitions
	ANTENNA
	AFI
	BIT(memory_bank:startbit, bits)
	COUNT
	EPCID
	HEX(memory_bank:address, length)
	INT(memory_bank:address, length)
	ISOUII
	RSSI
	STRING(memory_bank:address, length)
	TAGTYPE
	TIME

	Data Conditions
	Using Native Tag Selector Logic in Data Conditions
	Using AND/OR Logic in Data Conditions
	Using the AND and OR Keywords
	Grouping Expressions Without Using Parentheses

	Multi-Protocol Condition Usage

	Chapter 4 -
BRI Commands
	BRI Commands
	ATTRIBUTE
	Changing the Reader Attributes
	Reading the Reader Attributes

	BLOCKPERMALOCK
	BLOCKPERMALOCK READ
	BRIVER
	CAPABILITIES
	DIAGNOSTICS
	ERASE
	FACDFLT
	HELP
	HWCC
	HWID
	HWPROD
	HWREGION
	HWVER
	KILLTAG
	LOCK
	PING
	PLATDFLT
	PRINT
	PROTECT
	READ
	READGPI
	REPEAT
	RESET
	SET
	SWVER
	TRIGGER
	TRIGGERCANCEL
	TRIGGERQUEUE
	TRIGGERREADY
	TRIGGERWAIT
	VERSION
	WRITE
	WRITEGPO

	BRI Extensions for NXP Tags
	NXPALARM
	NXPCONFIG
	NXPEAS
	NXPREADPROTECT

	BRI Extensions for Fujitsu Tags
	FJBURSTERASE
	FJBURSTWRITE
	FJCHGBLOCKGROUPPWD
	FJCHGBLOCKLOCK
	FJCHGWORDLOCK
	FJREADBLOCKLOCK

	BRI Extensions for Impinj Monza 4 Tags
	READ IMPINJQT
	WRITE IMPINJQT

	Understanding [READ FIELD] and [WRITE FIELD] Parameters
	[READ FIELD] Examples
	[WRITE FIELD] Examples

	Understanding the <ATTRIBUTE NAME> Parameter
	ANTENNAS or ANTS
	ANTTIMEOUT
	ANTTRIES
	BAUD
	BTPWROFF
	CHKSUM
	DENSEREADERMODE
	ECHO
	EPCC1G2PARAMETERS
	FIELDSEP
	FIELDSTRENGTH
	IDREPORT
	IDTIMEOUT
	IDTRIES
	INITIALQ
	INITTRIES
	LBTCHANNEL
	LBTSCANENABLE
	LOCKTRIES
	NOTAGRPT
	RDTRIES
	RPTTIMEOUT
	SCHEDULEOPT
	SELTRIES
	SESSION
	TAGTYPE
	TIMEOUTMODE
	TTY
	UNSELTRIES
	XONXOFF
	WRTRIES

	Understanding the Timeouts and Tries
	Setting IDTIMEOUT and ANTTIMEOUT
	When IDTIMEOUT <= ANTTIMEOUT
	When IDTIMEOUT > ANTTIMEOUT

	Setting IDTRIES and ANTTRIES
	When IDTRIES < ANTTRIES
	When IDTRIES >= ANTTRIES

	Setting INITTRIES

	Understanding the [LITERAL] Parameter
	Reading and Writing STRING Fields
	Understanding ACCESS and KILL Passwords
	Memory Bank 3 User Memory
	Memory Bank 2 TID Memory
	Memory Bank 1 EPCID Memory
	Memory Bank 0 PASSWORD Memory

	Understanding Error and Success Responses
	Understanding EVENT Messages
	Understanding the Format of BRI Command Responses
	Creating and Using BRI Macros
	Creating a Command Macro
	Executing a Command Macro
	Creating a Parameter Macro
	Executing a Command With a Parameter Macro
	Listing All Macros Stored in Memory
	Displaying the Contents of a Macro
	Deleting a Macro

	Chapter 5 -
Reader-Specific Platform Specifications
	Reader-Specific Platform Specifications
	ITRFxxx01 Readers
	BRI Disabled by Default
	Features Not Implemented
	Buffer Sizes
	Memory Management
	Error Responses
	Antennas
	GPIO
	Reader Attributes
	BRI Commands
	EVENT Responses
	Phillips V1.19 TAG Type

	Readers That Contain the IM5 Module
	Buffer Sizes
	Antennas
	GPIO
	Reader Attributes
	FACDFLT Command

	Readers That Contain the IM4 Module
	WRITEGPI Command
	READGPI Command
	TRIGGER Command
	Antennas
	ANTENNA Data Type Definition
	ANTENNAS or ANTS Attribute

	Sensing an Over-Temperature Condition

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

